Abstract-ID: 2398

Title of the paper:
Authors: Almeida, T.1, Espada, M.1,2, Reis, J.1, Vleck, V.1, Bruno, P.1, Alves, F. 1
Institution: (1) Faculty of Human Kinetics - University of Lisbon / (2) Polytechnic Institute of Setubal
Department:
CIPER - Interdisciplinary Center for the Study of Human Performance
\section*{Country:}
Portugal

Introduction

Critical velocity (CV) calculated as the slope of the distance-time (d-t) relationship, represents an important parameter of aerobic function. The y-intercept derived from this relationship is defined as a finite stock of reserve power available pre-exercise, usually termed anaerobic work capacity or D^{\prime}, and associated to the distance that can be completed resorting to anaerobic metabolism (Jones et al. 2010). Athletes with a relatively high anaerobic capacity will tend to have slower oxygen uptake (VO2) kinetics than long-distance specialists (Jones \& Burnley, 2009). The aim of this study was to examine the relationship between $\mathrm{CV}, \mathrm{D}^{\prime}$ and VO2 kinetics in swimming.

Methods
Ten trained competitive male swimmers performed maximal 200 and 400 m front crawl swims (S200, S400). CV was calculated as the slope of distance-time relationship ($\mathrm{Sd}-\mathrm{t}$) from these maximal trials. D' resulted from the linear coefficient (y-intercept) of the d-t model. 50 m competitive front crawl swimming performance was recorded for analysis (S50). Maximal aerobic velocity (MAV) was estimated from mean swimming velocity of the 400 m . The maximal oxygen uptake (VO2max) was determined through an incremental step test comprising 5×250 and $1 \times 200-\mathrm{m}$ stages and VO2 kinetics parameters were determined from two 500 m constant intensity swimming exercise bouts, at 87.5% and 92.5% of MAV. Both the incremental and the 500m tests were performed using aquatrainer swimming snorkel® for breath-by-breath data collection, (K4b2, Cosmed, Italy).

Results
CV ($1.41 \pm 0.06 \mathrm{~m} . \mathrm{s}-1)$ was significantly lower than MAV (1.45 ± 0.04 $\mathrm{m} . \mathrm{s}-1$). VO2max ($3806.2 \pm 462.9 \mathrm{ml}$ min-1) was not significantly different from VO2 at 92.5 \% MAV (3695.9 ± 385.9 ml.min-1). CV was negatively correlated to the time constant of the primary phase (taup) at 87.5% MAV ($19.5 \pm 8.9-\mathrm{sec}$) and 92.5% MAV ($17.4 \pm 6.7-\mathrm{sec}$)
(respectively $\mathrm{r}=-0.72$ and $-0.64, \mathrm{p}<0.05$). The amplitude of the primary phase (Ap) at 87.5% MAV ($3090.4 \pm 456.8 \mathrm{ml} . \mathrm{min}-1$) was negatively correlated to $\mathrm{S} 50(26.8 \pm 0.9-\mathrm{sec})(\mathrm{r}=-0.66, \mathrm{p}<0.05)$. D^{\prime} ($19.9 \pm 7.0 \mathrm{~m}$) presented no correlations to VO2 kinetics parameters but was negatively correlated to $\mathrm{S} 50(\mathrm{r}=-0.67, \mathrm{p}<0.05)$.

Discussion
Our results are in line with those of Reis et al. (2012), which support the notion that the primary phase of VO 2 kinetics is an important determinant of aerobic swimming performance. The relation between CV and VO 2 kinetics parameter highlights the pertinence of VO 2 data collection in swimming for physiological profiling and training optimization.

References
Jones, A.M., Vanhatalo, A., Burnley, M., Morton, R.H., Poole, D.C. (2010). Med Sci Sports Exerc; 42(10): 1876-90. Jones, A.M. \& Burnley, M. (2009). Int J Sports Physiol Perform; 4(4): 524-32.
Reis, J.F., Alves, F.B., Bruno, P.M., Vleck, V., Millet, G.P. (2012). J Sci Med Sport; 15(1): 58-63.

Topic: \quad Training and Testing
Keyword I: Oxygen Uptake Kinetics
Keyword II: Critical Velocity
Keyword III: Swimming

