19,120 research outputs found

    Different steady states for spin currents in noncollinear multilayers

    Full text link
    We find there are at least two different steady states for transport across noncollinear magnetic multilayers. In the conventional one there is a discontinuity in the spin current across the interfaces which has been identified as the source of current induced magnetic reversal; in the one advocated herein the spin torque arises from the spin accumulation transverse to the magnetization of a magnetic layer. These two states have quite different attributes which should be discerned by current experiments.Comment: 8 pages, no figure. Accepted for publication in Journal of Physics: Condensed Matte

    AdS-Carroll Branes

    Get PDF
    Coset methods are used to determine the action of a co-dimension one brane (domain wall) embedded in (d+1)-dimensional AdS space in the Carroll limit in which the speed of light goes to zero. The action is invariant under the non-linearly realized symmetries of the AdS-Carroll spacetime. The Nambu-Goldstone field exhibits a static spatial distribution for the brane with a time varying momentum density related to the brane's spatial shape as well as the AdS-C geometry. The AdS-C vector field dual theory is obtained.Comment: 47 page

    Scale invariant correlations and the distribution of prime numbers

    Full text link
    Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.

    An embedding potential definition of channel functions

    Full text link
    We show that the imaginary part of the embedding potential, a generalised logarithmic derivative, defined over the interface between an electrical lead and some conductor, has orthogonal eigenfunctions which define conduction channels into and out of the lead. In the case of an infinitely extended interface we establish the relationship between these eigenfunctions and the Bloch states evaluated over the interface. Using the new channel functions, a well-known result for the total transmission through the conductor system is simply derived.Comment: 14 pages, 2 figure

    Focusing of Intense Subpicosecond Laser Pulses in Wedge Targets

    Full text link
    Two dimensional particle-in-cell simulations characterizing the interaction of ultraintense short pulse lasers in the range 10^{18} \leq I \leq 10^{20} W/cm^{2} with converging target geometries are presented. Seeking to examine intensity amplification in high-power laser systems, where focal spots are typically non-diffraction limited, we describe key dynamical features as the injected laser intensity and convergence angle of the target are systematically varied. We find that laser pulses are focused down to a wavelength with the peak intensity amplified by an order of magnitude beyond its vacuum value, and develop a simple model for how the peak location moves back towards the injection plane over time. This performance is sustained over hundreds of femtoseconds and scales to laser intensities beyond 10^{20} W/cm^{2} at 1 \mu m wavelength.Comment: 5 pages, 6 figures, accepted for publication in Physics of Plasma

    Path-integral calculation of the third virial coefficient of quantum gases at low temperatures

    Full text link
    We derive path-integral expressions for the second and third virial coefficients of monatomic quantum gases. Unlike previous work that considered only Boltzmann statistics, we include exchange effects (Bose-Einstein or Fermi-Dirac statistics). We use state-of-the-art pair and three-body potentials to calculate the third virial coefficient of 3He and 4He in the temperature range 2.6-24.5561 K. We obtain uncertainties smaller than those of the limited experimental data. Inclusion of exchange effects is necessary to obtain accurate results below about 7 K.Comment: The following article has been accepted by The Journal of Chemical Physics. After it is published, it will be found at http://jcp.aip.org/ Version 2 includes the corrections detailed in the Erratu

    A note on the calculation of the effective range

    Full text link
    The closed form of the first order non-linear differential equation that is satisfied by the effective range within the variable phase formulation of scattering theory is discussed. It is shown that the conventional method of determining the effective range, by fitting a numerical solution of the Schr\"odinger equation to known asymptotic boundary conditions, can be modified to include the first order contribution of a long range interaction.Comment: 4 page

    The phase-dependent linear conductance of a superconducting quantum point contact

    Full text link
    The exact expression for the phase-dependent linear conductance of a weakly damped superconducting quantum point contact is obtained. The calculation is performed by summing up the complete perturbative series in the coupling between the electrodes. The failure of any finite order perturbative expansion in the limit of small voltage and small quasi-particle damping is analyzed in detail. In the low transmission regime this nonperturbative calculation yields a result which is at variance with standard tunnel theory. Our result predicts the correct sign of the quasi-particle pair interference term and exhibits an unusual phase-dependence at low temperatures in qualitative agreement with the available experimental data.Comment: 12 pages (revtex) + 1 postscript figure. Submitted to Phys. Rev. Let
    corecore