82 research outputs found
Recovery from disturbance requires resynchronization of ecosystem nutrient cycles
Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance
HST Observations of Heavy Elements in Metal-Poor Galactic Halo Stars
We present new abundance determinations of neutron-capture elements Ge, Zr,
Os, Ir, and Pt in a sample of 11 metal-poor (-3.1 <= [Fe/H] <= -1.6) Galactic
halo giant stars, based on Hubble Space Telescope UV and Keck I optical
high-resolution spectroscopy. The stellar sample is dominated by r-process-rich
stars such as the well-studied CS 22892-052 and bd+173248, but also includes
the r-process-poor, bright giant HD 122563. Our results demonstrate that
abundances of the 3rd r-process peak elements Os, Ir and Pt in these metal-poor
halo stars are very well-correlated among themselves, and with the abundances
of the canonical r-process element Eu (determined in other studies), thus
arguing for a common origin or site for r-process nucleosynthesis of heavier
(Z>56) elements. However, the large (and correlated) scatters of
[Eu,Os,Ir,Pt/Fe] suggests that the heaviest neutron-capture r-process elements
are not formed in all supernovae. In contrast, the Ge abundances of all program
stars track their Fe abundances, very well. An explosive process on iron-peak
nuclei (e.g., the alpha-rich freeze-out in supernovae), rather than neutron
capture, appears to have been the dominant synthesis mechanism for this element
at low metallicities -- Ge abundances seem completely uncorrelated with Eu.Comment: 35 pages, 5 tables, 7 figures; To appear in the Astrophysical Journa
The Chemical Composition and Age of the Metal-Poor Halo Star BD +17^\circ 3248
We have combined new high-resolution spectra obtained with the Hubble Space
Telescope (HST) and ground-based facilities to make a comprehensive new
abundance analysis of the metal-poor, halo star BD +17^\circ 3248. We have
detected the third r-process peak elements osmium, platinum, and (for the first
time in a metal-poor star) gold, elements whose abundances can only be reliably
determined using HST. Our observations illustrate a pattern seen in other
similar halo stars with the abundances of the heavier neutron-capture elements,
including the third r-process peak elements, consistent with a scaled solar
system r-process distribution. The abundances of the lighter neutron-capture
elements, including germanium and silver, fall below that same scaled solar
r-process curve, a result similar to that seen in the ultra-metal-poor star CS
22892--052. A single site with two regimes or sets of conditions, or perhaps
two different sites for the lighter and heavier neutron-capture elements, might
explain the abundance pattern seen in this star. In addition we have derived a
reliable abundance for the radioactive element thorium. We tentatively identify
U II at 3859 A in the spectrum of BD +17^\circ 3248, which makes this the
second detection of uranium in a very metal-poor halo star. Our combined
observations cover the widest range in proton number (from germanium to
uranium) thus far of neutron-capture elements in metal-poor Galactic halo
stars. Employing the thorium and uranium abundances in comparison with each
other and with several stable elements, we determine an average
cosmochronological age for BD +17^\circ 3248 of 13.8 +/- 4 Gyr, consistent with
that found for other similar metal-poor halo stars.Comment: 58 pages, 4 tables, 11 figures; To appear in ApJ Typo correcte
Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics.
The incidence of Plasmodium vivax infection has declined markedly in Malaysia over the past decade despite evidence of high-grade chloroquine resistance. Here we investigate the genetic changes in a P. vivax population approaching elimination in 51 isolates from Sabah, Malaysia and compare these with data from 104 isolates from Thailand and 104 isolates from Indonesia. Sabah displays extensive population structure, mirroring that previously seen with the emergence of artemisinin-resistant P. falciparum founder populations in Cambodia. Fifty-four percent of the Sabah isolates have identical genomes, consistent with a rapid clonal expansion. Across Sabah, there is a high prevalence of loci known to be associated with antimalarial drug resistance. Measures of differentiation between the three countries reveal several gene regions under putative selection in Sabah. Our findings highlight important factors pertinent to parasite resurgence and molecular cues that can be used to monitor low-endemic populations at the end stages of P. vivax elimination
Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.
Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity
The Extremely Metal-Poor, Neutron-Capture-Rich Star CS 22892-052: A Comprehensive Abundance Analysis
High-resolution spectra obtained with three ground-based facilities and the
Hubble Space Telescope (HST) have been combined to produce a new abundance
analysis of CS 22892-052, an extremely metal-poor giant with large relative
enhancements of neutron-capture elements. A revised model stellar atmosphere
has been derived with the aid of a large number of Fe-peak transitions,
including both neutral and ionized species of six elements.Several elements,
including Mo, Lu, Au, Pt and Pb, have been detected for the first time in CS
22892-052, and significant upper limits have been placed on the abundances of
Ga, Ge, Cd, Sn, and U in this star. In total, abundance measurements or upper
limits have been determined for 57 elements, far more than previously possible.
New Be and Li detections in CS 22892-052 indicate that the abundances of both
these elements are significantly depleted compared to unevolved main-sequence
turnoff stars of similar metallicity. Abundance comparisons show an excellent
agreement between the heaviest n-capture elements (Z >= 56) and scaled solar
system r-process abundances, confirming earlier results for CS 22892-052 and
other metal-poor stars. New theoretical r-process calculations also show good
agreement with CS 22892-052 abundances as well as the solar r-process abundance
components.The abundances of lighter elements (40<= Z <= 50), however, deviate
from the same scaled abundance curves that match the heavier elements,
suggesting different synthesis conditions or sites for the low-mass and
high-mass ends of the abundance distribution. The detection of Th and the upper
limit on the U abundance together imply a lower limit of 10.4 Gyr on the age of
CS 22892-052, quite consistent with the Th/Eu age estimate of 12.8 +/- ~= 3
Gyr. An average of several chronometric ratios yields an age 14.2 +/- ~= 3 Gyr.Comment: 65 pages, 8 figures, 10 tables; To appear in the Astrophysical
Journa
Enteric Neural Crest Differentiation in Ganglioneuromas Implicates Hedgehog Signaling in Peripheral Neuroblastic Tumor Pathogenesis
Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways
Population Genetic Analysis of Plasmodium falciparum Parasites Using a Customized Illumina GoldenGate Genotyping Assay
The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum
Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
- …