2,394 research outputs found
Equation of motion approach to the Hubbard model in infinite dimensions
We consider the Hubbard model on the infinite-dimensional Bethe lattice and
construct a systematic series of self-consistent approximations to the
one-particle Green's function, . The first
equations of motion are exactly fullfilled by and the
'th equation of motion is decoupled following a simple set of decoupling
rules. corresponds to the Hubbard-III approximation. We
present analytic and numerical results for the Mott-Hubbard transition at half
filling for .Comment: 10pager, REVTEX, 8-figures not available in postscript, manuscript
may be understood without figure
Molecular oxygen as a signaling component in plant development
While traditionally hypoxia has been studied as a detrimental component of flooding stress, the last decade has flourished with studies reporting the involvement of molecular oxygen availability in plant developmental processes. Moreover, proliferating and undifferentiated cells from different plant tissues were found to reside in endogenously generated hypoxic niches. Thus, stress-associated acute hypoxia may be distinguished from constitutively generated chronic hypoxia. The Cys/Arg branch of the N-degron pathway assumes a central role in integrating oxygen levels resulting in proteolysis of transcriptional regulators that control different aspects of plant growth and development. As a target of this pathway, group VII of the Ethylene Response Factor (ERF-VII) family has emerged as a hub for the integration of oxygen dynamics in root development and during seedling establishment. Additionally, vegetative shoot meristem activity and reproductive transition were recently associated with oxygen availability via two novel substrates of the N-degron pathways: VERNALISATION 2 (VRN2) and LITTLE ZIPPER 2 (ZPR2). Together, these observations support roles for molecular oxygen as a signalling molecule in plant development, as well as in essential metabolic reactions. Here, we review recent findings regarding oxygen-regulated development, and discuss outstanding questions that spring from these discoveries
Charge-density-wave order parameter of the Falicov-Kimball model in infinite dimensions
In the large-U limit, the Falicov-Kimball model maps onto an effective Ising
model, with an order parameter described by a BCS-like mean-field theory in
infinite dimensions. In the small-U limit, van Dongen and Vollhardt showed that
the order parameter assumes a strange non-BCS-like shape with a sharp reduction
near T approx T_c/2. Here we numerically investigate the crossover between
these two regimes and qualitatively determine the order parameter for a variety
of different values of U. We find the overall behavior of the order parameter
as a function of temperature to be quite anomalous.Comment: (5 pages, 3 figures, typeset with ReVTeX4
Cluster persistence in one-dimensional diffusion--limited cluster--cluster aggregation
The persistence probability, , of a cluster to remain unaggregated is
studied in cluster-cluster aggregation, when the diffusion coefficient of a
cluster depends on its size as . In the mean-field the
problem maps to the survival of three annihilating random walkers with
time-dependent noise correlations. For the motion of persistent
clusters becomes asymptotically irrelevant and the mean-field theory provides a
correct description. For the spatial fluctuations remain relevant
and the persistence probability is overestimated by the random walk theory. The
decay of persistence determines the small size tail of the cluster size
distribution. For the distribution is flat and, surprisingly,
independent of .Comment: 11 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
Nontrivial Polydispersity Exponents in Aggregation Models
We consider the scaling solutions of Smoluchowski's equation of irreversible
aggregation, for a non gelling collision kernel. The scaling mass distribution
f(s) diverges as s^{-tau} when s->0. tau is non trivial and could, until now,
only be computed by numerical simulations. We develop here new general methods
to obtain exact bounds and good approximations of . For the specific
kernel KdD(x,y)=(x^{1/D}+y^{1/D})^d, describing a mean-field model of particles
moving in d dimensions and aggregating with conservation of ``mass'' s=R^D (R
is the particle radius), perturbative and nonperturbative expansions are
derived.
For a general kernel, we find exact inequalities for tau and develop a
variational approximation which is used to carry out the first systematic study
of tau(d,D) for KdD. The agreement is excellent both with the expansions we
derived and with existing numerical values. Finally, we discuss a possible
application to 2d decaying turbulence.Comment: 16 pages (multicol.sty), 6 eps figures (uses epsfig), Minor
corrections. Notations improved, as published in Phys. Rev. E 55, 546
Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model
The simplest statistical-mechanical model of crystalline formation (or alloy
formation) that includes electronic degrees of freedom is solved exactly in the
limit of large spatial dimensions and infinite interaction strength. The
solutions contain both second-order phase transitions and first-order phase
transitions (that involve phase-separation or segregation) which are likely to
illustrate the basic physics behind the static charge-stripe ordering in
cuprate systems. In addition, we find the spinodal-decomposition temperature
satisfies an approximate scaling law.Comment: 19 pages and 10 figure
Dynamic Scaling in One-Dimensional Cluster-Cluster Aggregation
We study the dynamic scaling properties of an aggregation model in which
particles obey both diffusive and driven ballistic dynamics. The diffusion
constant and the velocity of a cluster of size follow
and , respectively. We determine the dynamic exponent and
the phase diagram for the asymptotic aggregation behavior in one dimension in
the presence of mixed dynamics. The asymptotic dynamics is dominated by the
process that has the largest dynamic exponent with a crossover that is located
at . The cluster size distributions scale similarly in all
cases but the scaling function depends continuously on and .
For the purely diffusive case the scaling function has a transition from
exponential to algebraic behavior at small argument values as changes
sign whereas in the drift dominated case the scaling function decays always
exponentially.Comment: 6 pages, 6 figures, RevTeX, submitted to Phys. Rev.
Analysis of linearized inverse problems in ultrasound transmission imaging
The purpose of this paper is to analyze the linearized inverse problem during the iterativesolution process of the ill-posed nonlinear inverse problem of image reconstruction for ultra-sound transmission imaging. We show that the conjugate gradient applied to normal equation(CGNE) method gives more reliable solutions for linearized systems than Tikhonov regular-ization methods. The linearized systems are more sensitive when treated by CGNE than byTikhonov regularization methods. The Tikhonov regularization is less effective at the be-ginning of the outer-loop iteration, where the nonlinearity is dominating while the conjugategradient for the linearized system stops earlier. Only when the linear approximation is goodenough to describe the whole system, Tikhonov regularization can fully play its role and giveslightly better reconstruction results as compared to CGNE in a very noisy case
- …