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Abstract
The purpose of this paper is to analyze the linearized inverse problem during the iterative
solution process of the ill-posed nonlinear inverse problem of image reconstruction for ultra-
sound transmission imaging. We show that the conjugate gradient applied to normal equation
(CGNE) method gives more reliable solutions for linearized systems than Tikhonov regular-
ization methods. The linearized systems are more sensitive when treated by CGNE than by
Tikhonov regularization methods. The Tikhonov regularization is less effective at the be-
ginning of the outer-loop iteration, where the nonlinearity is dominating while the conjugate
gradient for the linearized system stops earlier. Only when the linear approximation is good
enough to describe the whole system, Tikhonov regularization can fully play its role and give
slightly better reconstruction results as compared to CGNE in a very noisy case.

Keywords: Gauss-Newton method, Inverse problem, Sensitivity analysis, Tikhonov regular-
ization, USCT

1 Introduction

Ultrasound computed tomography (USCT) as imaging method offers high potential for breast
cancer diagnosis. Due to the acquisition of transmission and reflection data from current 2D
or 3D USCT devices [1-4], three types of images can be reconstructed from the acquired sig-
nals: reflection, attenuation and speed of sound (SoS) images [5]. While reflection images
[6, 7] reveal changes in the echo texture of the surfaces between different tissues (qualitative
imaging), transmission tomography offers quantitative characterization of the imaged tissue
or materials by SoS and attenuation profiles [8].
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The process of transmission imaging of the USCT system at Karlsruhe Institute of Technol-
ogy (KIT) [1, 4] is separated into two parts: a forward model approximating the path of the
ultrasound wave traveling through the 3D aperture; and an inverse problem given by the for-
ward model and the measured signals to reconstruct the image. Our forward model is based
on a paraxial approximation of the wave equation [9-11], which computes the pressure field
p(h) for known complex refraction index 1+h . The inverse problem is hereby formulated
as a nonlinear least-squares problem

f (h) =
1
2
kp(h)� p̂k2

2 =
1
2
krk2

2, (1)

where r : Cn ! Cm is called residual vector. Here, p̂ 2 Cm are the pressure fields measured
at the receivers, and p(h) : Cn ! Cm are the predicted pressure fields computed according
to the forward model (2). By minimizing f (h) we want to reconstruct for the SoS and
attenuation parameters that are inherent in h .

For the 3D USCT system reported in [1], a number of A-scans are performed to reconstruct a
volume of voxels for a breast with a diameter of about 16 cm. As the validity of the paraxial
approximation for forward angles is only up to 20�, the number of usable A-scans for trans-
mission tomography is limited to about 6%. This is the main reason that the reconstruction
using the paraxial approximation is an ill-posed problem. To solve this large-scale nonlinear
inverse problem, we use a Newton type method yielding a set of linearizations of the problem
(1). This is a standard approach for nonlinear inverse problems [12]. Due to the ill-posed
nature of the problem, regularization is necessary. We choose three common methods of
regularization for solving the linearized sub-problems in an inner loop: conjugate gradient
applied to normal equation (CGNE) [13, 14]; damped least-squares [15, 16]; and gradient
magnitude. The latter two use Tikhonov regularization.

In this paper, we specifically focus on analyzing the properties of the numerical solutions
of the linearized inverse problems arising from Newton type iterations, with common regu-
larization techniques. By this analysis we aim to show how well the predicted data match
the true data and how close a particular estimate of the model parameters is to the true so-
lution. For this type of problems, we propose using standard methods for analyzing linear
inverse problems by computing the data resolution and model resolution [16] at different it-
erations. We choose standard Tikhonov type [15] regularization methods because they have
closed-form solutions in these matrices.
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2 Method

2.1 Forward model

The basis for transmission tomography is the wave propagation of ultrasound including re-
fraction, diffraction, and forward scattering which is mathematically described by the wave
equation for inhomogeneous media [17]. A full solution of the wave equation is compu-
tationally highly demanding and in practice an approximation is necessary. We make the
assumption of a constant density fulfilled in the soft tissue of the breast, and use the paraxial
approximation [9-11] where the forward solution of frequency dependent pressure field on
the computational grid can be formulated as

pz+1 = eiDzk0hzF�1
n

eiDz
p

k2
0�x 2

F{pz}
o
. (2)

The acoustic medium is described by the background wave number k0 = w/c and the re-
fractive index 1+h , where w = 2p f is the angular frequency for frequency f and spped of
sound c of the background medium, and h accounts for the deviation of the inhomogeneity
from the background medium. The forward solution is considered as a set of parallel slices
perpendicular to the emission direction, where the index z for variables p and h denotes
the considered z slice, whereas the indices for the (x,y)-directions are omitted. The spectral
variable is denoted by x and the discrete Fourier transformation and its inverse are denoted
by F and F�1 in 1D or 2D, depending on whether the problem is considered in 2D or 3D
respectively.

2.2 Inversion by Gauss-Newton conjugate gradient

Image reconstruction estimates SoS, denoted as c, and attenuation, denoted as Datt, which
are incorporated in the complex variable h . To be specific, h = a+ i b

w , where Re(h) =
a = c0/c� 1 describes the deviation of c from the SoS c0 in the background medium; and
Im(h) = b/w = Datt accounts for the deviation in the attenuation. We estimate h via solving
the least-squares inverse problem (1) in a two-level strategy, by an outer and an inner loop.
At each iteration of the outer loop, we linearize and reformulate the inverse problem using
the Gauss-Newton (GN) method, which can be viewed as a modified Newton’s method [18].
Specifically, given the nonlinear least-squares problem f (h) of (1), instead of solving the
standard Newton equations —2 f (h) =�— f (h) for a search direction d (which can be over-
determined or under-determined depending on matrix dimensions), we solve the following
system, i.e. the normal equations, to obtain the search direction

JT Jd =�JT r. (3)
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Here, the derivatives of f (h) are expressed in terms of the Jacobian J, which is the m⇥ n
matrix of the first partial derivatives of the residual vector, defined by

J =


∂ r j

∂hi

�

j = 1,2, . . . ,m
i = 1,2, . . . ,n

=
⇥
—rT

1 ,—rT
2 , . . . ,—rT

m
⇤T

. (4)

The use of the approximation —2 ⇡ JT J relieves us to compute individual residual Hessians
—2r j, j = 1,2, . . . ,m. To solve the linearized system (3), where the system matrix now cor-
responds to JT J, we use the conjugate gradient (CG) method [19] as an inner loop solver.

2.3 Regularization

The minimization problem of the least-squares (1) is ill-posed, making regularization neces-
sary. We analyze three methods for solving the linearized systems in the inner loop.

Method No.1: CGNE. The Gauss-Newton CG method applies CG to the normal equations
of the linearized problem (3). As discussed in [13], this method has a regularization effect
which comes from early termination of the iteration.

Method No.2: Damped least-squares regularization (denoted as Reg-DLS). A com-
monly used regularization method is Tikhonov regularization [15]. In our reconstruction
problem, the goal is to estimate h in (2). Note that the GN search direction d in (3) is actu-
ally an update that will be added to the current guess of h at a given outer-loop iteration. If
there exists an estimate of ĥ that is close to the true h , then a Tikhonov regularization term
can be defined to minimize the difference between ĥ and the current guess. For example, let
us consider hcur as the best estimate so far for a given outer-loop iteration. We can simply
assume ĥ = hcur. Then, the regularization term for the linearized system at this outer-loop
iteration is defined as

khnew � ĥk2
2 = kDhk2

2 = kadk2
2. (5)

Accordingly, solving the linearized system (3) with this regularization term is equivalent to
solving

min
d

kJd � rk2
2 +l 2kdk2

2. (6)

where l is a regularization parameter. The minimizer solution d is obtained by solving

�
JT J+l 2I

�
d = JT r. (7)
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Method No.3: Gradient magnitude regularization (denoted as Reg-GM).Another Tikhonov
regularization term is based on a smoothness assumption using the discretized gradient as
filter [�1,1]. Therefore, the regularization term is defined to penalize the gradient magnitude
(GM) of h , i.e.

kLhnewk2
2 = kL(h +ad)k2

2 (8)

at a given outer-loop iteration, where

L =

0

BBBB@

�1 1
�1 1

. . . . . .
�1 1

0

1

CCCCA
2 Rn⇥n. (9)

Accordingly, solving the linearized system (3) with this regularization term is equivalent to
solving

min
d

kJd � rk2
2 +l 2kL(h +d)k2

2. (10)

The minimizer solution d is obtained by solving

�
JT J+l 2LT L

�
d = JT r�l 2LT Lh . (11)

2.4 Analysis tools

We need to solve the linear inverse problem (3), or (7), or (11) at each outer-loop iteration
of the reconstruction. We call d the model parameters and r the data, of the linear inverse
problem Jd = r. Note that the term “model parameters” in the rest of this paper does NOT
refer to the parameters h that we aim to reconstruct. We compute the data resolution matrix
N and model resolution matrix R that are defined in [16], to respectively reflect how well the
predicted data fits the observed data (via N), and how close a particular estimate of the model
parameters is to the true solution (via R). In order to quantify the resolution quality, we use
Dirichlet spread functions [16] which are based on the size, or spread, of the off-diagonal
elements of resolution matrix. We also use the Backus-Gilbert spread functions [20], which
is a weighted version of the spread functions.
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3 Results

We compute the resolution matrices of the linearized problems arising from outer-loop itera-
tions, when we apply different regularization methods and parameters. We simulate the mea-
surements data of pressure field p̂, based on the forward model of equation (2), as p(hexact)
plus additive Gaussian noise characterized by the signal-to-noise ratio (SNR). The known
hexact is the ground truth of a breast simulation. We only focus on 2D reconstruction prob-
lems, where the y dimension is omitted. The problem size n is the 2D phantom image size,
i.e. n = nx ⇥ nz, while the size of the measurements data depends on the number of trans-
ducers nt , i.e. m = nx ⇥ nt . For analysis purpose, at every outer-loop iteration, we have to
compute, store and perform SVD or other operations on the system matrix of size m⇥ n,
the data resolution matrix of size m⇥m, and the model resolution matrix of size n⇥n. The
computational load and necessary memory are impractical for real-size problems. There-
fore, we used a reduced problem setting as follows: the image size for all phantoms is
nx ⇥nz = 48⇥36 (n = 1728) with each pixel of size Dz = 0.61 mm; the radius of the mea-
suring device is 18.2 mm and the radius of the phantom is 10.6 mm; nt = 128 transducers
are simulated at the frequency of 2.5 MHz. For the two Tikhonov methods Reg-DLS and
Reg- GM, we set the regularization parameter l by the L-curve method [15] applied at every
outer-loop iteration. We perform an extra test for Reg-DLS with significantly larger l values
denoted as “Reg-DLS-lcurve2”.

We plot the spread values of data resolution and model resolution matrices during 50 Gauss-
Newton iterations for a noisy case using data with a SNR = 40dB, as shown in Figure 1.
From our results, the data matrix N is a very sparse matrix, with large values located on the
main diagonal and sub-diagonal positions. This means each row has a single sharp maxi-
mum centered about the main diagonal, and the data are well resolved. This phenomenon is
testified by the upper chart in Figure 1, where the CGNE method has the smallest Dirichlet
spread values when compared to any other Tikhonov regularization methods. This is because
the Tikhonov regularization has the effect of preventing data over-fitting, where the predicted
data are weighted average values of more neighboring observed data than the CGNE method,
and hence are generally more biased. This property of the Tikhonov regularization results
in more non-zero elements in each row of its data matrix N, and therefore larger Dirichlet
spread values.

During the first few outer-loop iterations, the linearized systems are not stable, which is
reflected by the fluctuations of the Dirichlet spread curves. As the reconstruction process
continues, the spread values become stable after a certain number of outer-loop iterations,
meaning that the results become more reliable. The R’s Backus-Gilbert spread values from
Tikhonov regularization methods also fluctuate during the first few outer-loop iterations.
This indicates that the model parameters possess a bad ordering since the Backus-Gilbert
spread favors a natural ordering in the model parameters, where the rows of R represent
localized averaging functions [16]. However, for the parameters that we aim to reconstruct,
they are mostly smooth and well-ordered, implying that the linearized approximations during
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Figure 1: The spread values of data resolution and model resolution matrices during 50 Gauss-Newton iterations for
noisy data with a SNR = 40 dB. The horizontal axis indicates the outer-loop iterations. Top: the Dirichlet
spread of data resolution matrix. Bottom: the Backus-Gilbert spread of model resolution matrix.

the first few outer-loop iterations are not reliable. This is in agreement with our observations
for the analysis of data resolution matrices.

We found that the method Reg-DLS-lcurve2 converges obviously slower than other meth-
ods. This method has the largest l values, and therefore, the outer-loop iterative steps are
more like gradient descent as compared to other methods whose steps are more like the
Newton-type method. This explains the slower convergence. On the other hand, this method
converges to slightly better reconstructions with our noisy data of SNR = 40dB.
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4 Conclusions

We have analyzed the properties of the numerical solutions of the linearized inverse prob-
lems handled by common regularization techniques, arising from Gauss-Newton iterations
in image reconstruction of ultrasound transmission tomography. To analyze the system sen-
sitivity, we have computed the data resolution and model resolution of the linearized systems
when applied to the CGNE method and to two Tikhonov regularization methods DLS and
GM. Our analysis of the linear problems during the iterative solution process gives valu-
able information about the problem itself and yields good indications of the success of the
solution process. Based on the analysis, a combination of different strategies, starting with
CGNE and ending with Tikhonov would be reasonable.
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