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Dynamic scaling in one-dimensional cluster-cluster aggregation

E. K. O. Helle,! T. P. Simula and M. J. Alava?
ILaboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
2 NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
(Received 16 May 2000

We study the dynamic scaling properties of an aggregation model in which particles obey both diffusive and
driven ballistic dynamics. The diffusion constant and the velocity of a cluster ofssiakow D(s)~s? and
v(s)~s’, respectively. We determine the dynamic exponent and the phase diagram for the asymptotic aggre-
gation behavior in one dimension in the presence of mixed dynamics. The asymptotic dynamics is dominated
by the process that has the largest dynamic exponent with a crossover that is locategl-al. The cluster
size distributions scale similarly in all cases but the scaling function depends continuouskynahs. For the
purely diffusive case the scaling function has a transition from exponential to algebraic behavior at small
argument values ag changes sign, whereas in the drift dominated case the scaling function always decays
exponentially.

PACS numbg(s): 64.60.Cn, 05.46-a, 82.20.Mj, 82.70.Dd

I. INTRODUCTION are identified as belonging to the same cluster. The diffusion
coefficient of a cluster of sizes takes the formD(s)

Both reaction- and diffusion-limited cluster-cluster aggre-=D,s”, where vy is the diffusion exponent anb, a non-
gation (DLCA) have been successfully used to understanghegative constant. The clusters are also driven in one direc-
the dynamics of colloidal aggregatiph]. These models pre-  tion with a size dependent drift velocity(s) =v,s°, which
dict well both the structure of aggregates and the growthyefines the field exponerdt
behavior in dilute particle suspensions as long as the dynam- |n simulations a cluster is selected randomly and the time
ics is dominated by Brownian diffusion. As the growth of the j5 incremented by (t) ~1Q,,L., whereN(t) is the number of
aggregates proceeds the sedimentation of clusters due {,sters at time and Q,., is the maximum mobility of any

gravitation becomes more pronounced, altering the growtlyf the clusters in the system at that time. The cluster mobility
mechanism and cluster structure. This was recently observed gefined as)(s)=C,s’+2Cps? where C, and Cp, are
v v

in experimentg2]. non-negative constants. The choi@ =0 gives normal

The purpose of this paper is to study dynamic scaling iny| ca. The cluster is moved only %< Q(s)/Q,4,, Wherex
one-dimensional cluster-cluster aggregation in the presengg 5 ypiformly distributed random number in the interval
of a competition between diffusion and drift. We show that 0,1]. The step is taken alon@gainst the field with prob-
the dynamics at long times is dominated by the aggregatio bility p(q), wherep=(C,s’+Cps”)/Q(s) andq=1—p.
process, which by itself would lead to the fastest growth. Thgs 4¢tar the move two cIuUsters are in contact, they are irre-

conventional mean-field theory gives the correct dynamic exyesiply aggregated together. Note that time is increased for
ponent for the field-dominated case but fails when diffusiong ., attempted move.

dominates. The mean-field theory also predicts that the scal- Figure 1 shows an example of the dynamics when either

ing function of the cluster size distribution in the diffusive the diffusion[Fig. 1(a)] or the drift[Fig. 1(b)] dominates the
(driver) case will drastically change whep (5) changes 5146 time aggregation behavior. The diffusion and field ex-
sign. Such a transition is observed for the diffusive case buf jnants are chosen in such a way that at large times the
not for the driven one. The dynamic phase diagram showg, gest clusters are the most mobile ones. In Fig), hotice

four different regions depending on the relative rates of thene clear breaking of the reflection symmetry in the cluster
diffusion and drift. dynamics as the drift begins to dominate. Similar behavior is

The paper is organized as follows. Section Il introduces;isiple in the early-time dynamics of the diffusion-dominated
the model and describes the algorithm used in simulations. |

Sec. lll the dynamic scaling is studied using the mean-field
rate equation approach. The mean-field results are compared
to simulations in Sec. IV. Section V concludes the paper

with a discussion. Ill. SCALING ANALYSIS

Before considering any specific aggregation rules let us
Il MODEL first present the well-known mean-field approach. We want
' to compare different dynamical processes in order to find the
The field-driven cluster-cluster aggregatiofFDCA) dominating aggregation mechanisms. Denote the number of
model is defined on a one-dimensional lattice with periodicclusters of sizes per site at timet by ng(t) and the mean
boundary conditions, for simplicity. Initially particles are cluster size byS(t). The mean-field description of irrevers-
distributed randomly on a lattice df sites up to a concen- ible aggregation, which neglects spatial correlations, is given
tration ¢. Sites connected via nearest neighbor occupancipy Smoluchowski's equatiof3]
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kernel Kp(i,j)~ (i¥d1+j¥1)d=2(j7+j7)(d=2), the mean-
field theory is not exact in any finite dimensip6] but the
deviations are already negligible @h=3 [7]. In the driven
case, if diffusion and velocity fluctuations are neglected,
clusters move ballistically. The collision probability of two
clusters is proportional to the product of the mutual cross
section of the clusters and the velocity difference between
clusters, K,(i,j)~(i¥r+jr)9-1i°—j%. Thus in the
mean-field description the driven systendidimensions has
: ¢ e A AT i’ similar scaling properties as the diffusive onelit 1 dimen-
LIS P A W B, RCEI A WD Y W JE2. sions and therefore the upper critical dimension is infinite for
0 200 400 600 800 1000 both.

position If both diffusion and drift are present the faster dynamics,
as measured by the associated dynamic exponent, could be
expected to dominate. This is verified by the simulation re-
sults, discussed in the next section. Thus it is adequate to
consider the two dynamic processes separately. For example,
in one dimension the scaling propertiesgf necessitate that
\= & together withu =& for §<0 (class Il) and =0 for
6=0 (class ). Thus the scaling function should drastically
change as changes its sign. In one dimension the collision
cross section is independent of the cluster sizes. Thus the
above scaling analysis is directly applicable to the diffusion-
; Sidf Al S A e limited case, too, and there should be a similar transition
o 200 400 600 800 1000 between the classes Il and Il #=0.

position In one dimension the scaling properties of the reaction

. kernels together witk _=1/(1—\) give the mean-field dy-
FIG. 1. An example of the dynamics in FDCA far=0.1, (a) . O ME i .

y=05, 6=-1.0, and(b) y=—1.0, 5=0.5. System size namic exponent in the diffusive and driven caseszgs

a) 1000

500 &

time

=1000. The time scales are normalized differently. =1/(1—vy) and z,.= 1/(1- ), respectively. The strong
fluctuations are responsible for the fact that the correct ex-
dng 1 ponent isz=1/(2— v) in the diffusive casg8,9]. The dy-
G2 E K(i,j)nin;— Z K(i,s)nng, (1) namic exponent may, on the other hand, be obtained more
itj=s simply by considering the two length scales coming from the

two dynamical processes: the diffusive length schle

where the reaction kernél(i,j) describes the rate at which ~ /Dt and the ballistic oné, ~vt. Naturally, the average
clusters of sizé andj aggregate. It is assumed to be a ho-cluster size is proportional to the dominant length scale, i.e.,
mogeneous functionK(ai,aj)=a*K(i,j) with K(i,j) S(t)~1, which together withD(s) ~s? andv(s) ~s° results
~i#j*~# for i<j. Kernels are classified by [4]: x>0  inz=1/(2— y) andz=1/(1— &) for the diffusion- and drift-
(class ), =0 (class 1), and «<<0 (class Il). Independent dominated cases, respectively. The simulation results pre-
of the class the solution scales for mass conserving systensgented in Sec. IV confirm these arguments. Thus the Smolu-
as ng(t)=S(t) "2f(s/S(t)). In class | the aggregation is chowski approach predicts the correct dynamic exponent for
dominated by the collisions of large clusters with large oneghe driven case even in one dimension. If both diffusion and
whereas the dominant contribution in class Ill comes fromdrift are presenz=max1/(2— v),1/(1— )} with the cross-
the reactions between large and small clusters. In class bver até=y—1.
these two processes are equally important. The class Ill pro- The average cluster size at the crossover can be estimated
cesses can be identified from the form of the scaling functiorby comparing the pairing timéthe time required forS
since in classes | and H(x)~x"" but in class Il f(x)  —2S) due to diffusion,tggg, to that due to driftf;,. In the
~exp(-x ) asx—0 [4]. diffusive case the pairing time can be obtained by consider-

Here we concentrate on the scaling function, on the polying a random walk on a coarse-grained system with the lat-
dispersity exponent, and on the dynamic exponentde-  tice constant set equal to the average cluster reRljus®]. In
scribing the growth of the mean cluster si&t)~t*. The  one dimension the cluster density on the latticepid)
polydispersity exponent in the mean fie(WF) is easily  =N(t)/V= ¢, where the volum&=L/R. A cluster travels a
found to ber, =1+\ in class I. Predicting it for class Il distance of its own radius diffusively in timB?%/D. As it
processes is still a challeng&]. However, for all nongelling  takes on the average ? steps to pair upto,,=R?%(Dp?).
systems, i.e.A<1, the dynamic exponent is related to the For driven clusters the variation in cluster velocities is the
homogeneity exponemt asz, _=1/(1—N\) [4]. relevant parameter. Therefore the pairing time is of order

The upper critical dimension, above which the mean-fieldtags= R/ (0,p), Whereo, = \(v<) —(v)“ is the standard de-
theory is exact, may be calculated once the reaction kernel iation of the cluster velocities. It can be calculated from the
known [6]. Consider for a moment the aggregation of clus-velocity distributionp(v)=snyds(v)/dv|, which giveso,
ters of fractal dimensiom; in d dimensions. For a DLCA ~uv;S°\/l, —12, wherel .= Jdxx?**1f(x) and the approxi-
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FIG. 2. The numerically obtained scaling functions as a function FIG. 3. Dynamic exponent from simulations as a function of
of the scaling variablec=s/S(t) for DLCA () and FDCA (5) at  €ither the diffusion exponeny (*) or the field exponen® (LJ).
times 10(---), 1 (- -), and 9<10° (—). System sizes and The solid line is given by 1/(+ ) and the dashed one by
number of realizations are ¢510°,50), (5x10°,1000), and (2 1/(2—7).
x 108,2000) fory=—0.5, y=0.05, andé=0.1, respectively.

plagued by strong crossover effects. This is illustrated in Fig.

mation comes from replacing the sum by an integral. Thet where the scaling functions are presented for several values
proportionality constanfA= ‘“2_|21 has to be determined of the diffusion exponent. The crossover behavior is in ex-
numerically from simulations since calculating it would re- cellent agreement with mean-field theory, according to
quire knowledge of the whole scaling function. The cross-which the kernels in classes | and Il show typical class II

over takes place a,,~t2,which gives the average cluster behavior for intermediate values: expf 1/u[)<x<1 [4].

size at the crossover as In our caseu= 7y and the intermediate region is presented
by horizontal lines in Fig. 4. The dynamics for=0 can be

2D\ YO+ D) solved exactly to establish that DLCA belongs to class Il at

Seros¢™ m , ) v.. The exact result for the cluster size distribution is

ng(t) =exp(—T)[ls-1(T)~Is+1(T)], whereT=4D,t andl (T)

wherer is the elementary particle radius. is the modified Bessel functiof12]. This gives f(x)
=xexp(—Cx)~x (x—0), where the constar@ depends on
IV. SIMULATIONS the average used to calculate the mean cluster size.

As the scaling function decays faster than a power law in

In simulations the system sizes range from@ B to 2 class Il the polydispersity exponentis well defined only
x 10°, the data are averaged over 50—2000 realizations, thiar y=0. Although the statistics is insufficient for a direct
concentration is usually at= 0.1, and random initial condi- determination of the relationshif( y), the fits to the scaling
tions are used. Neither the initial conditions nor the concen-
tration have any effect on the asymptotic dynamic scaling 10"
properties as was verified by simulations. The time scale is
fixed by settingCp=1 for DLCA andC,=1 for FDCA if )
not otherwise mentioned. The mean cluster size is calculated 10 |
using both the numbelk& 1) and weight averagek € 2),

10” |

Sd0=2, sny() / 2, sy, (3) g

10}
Both averages scale similarly and the number average is used
in all the figures following. In order to ensure that the scaling 107
regime is reached the dynamic exponent is calculated using
the method of consecutive slopjekl]. 107 , , ,
We first consider purely diffusive dynamics, i.€,=0. 1072 1072 10”" 10° 10
We obtain an excellent scaling for the cluster size distribu- X
tion using the scaling formmg(t) = (t) Zf(S/S_(t)) (Fig. 2) FIG. 4. The scaling functions as a function of the scaling vari-
and the known[8,9] result for the dynamic exponert .o tor DLCA for y=-0.05 -025 -050, —0.75from
=1(2-y) (Fig. 3. ) ) top to bottom at the times 19 (- --), 1 (- -), and 9x 10° (—).
The decay of the scaling function neer0 depends on  system sizd. =5x 10° and data are averaged over 25 runs except
the sign of y and there is a transition from class Illy(  for y=—0.05 (491 runs. Horizontal lines show the crossover re-
<v,) to class Il (y=v,) at y.=0 in accordance with the gion exp(14)=<x=<1 where the scaling functions show typical class
mean-field analysis. However, the transition between the alH behavior. The data for varioug values have been shifted in the
gebraic and nonalgebraic decay of the scaling function isertical direction to make the figure clearer.




PRE 62 DYNAMIC SCALING IN ONE-DIMENSIONAL CLUSTER-. .. 4755

function show that- increases monotonically with increasing
v so thatr=0 at abouty~0.7. The scaling theory states that  1¢°
for class IIng(t)~s "t~ " for 1<s<S andt—o with the
scaling relationw=(2— 7)z [4]. The exponentv can be ob-
tained more accurately from simulations thanA careful 10
analysis of the data shows thatis roughly a constantyv e
~1.50+0.05, for y[0,0.5]. However,w cannot be inde-
pendent ofy since necessarilw=z, which diverges when
y—2. Approximatingw~1.50 neary=0 leads tor(y)
~1.50y—1.00, which is zero ay,~0.67 (compare with the
actual result abovye This approximation is consistent with
the exact valuer(0)=—1 [12].

Note that the pointyy=~0.7 at which the cluster size dis-
trlbgtlon Changes from a nonmonotonic functlpn o amono- g5 g Average cluster size for various mobilities and concen-
tonic one is not the same as the transition point between the_ .. ¢ y=—05 and 5=0.5 in the diffusiveCp=1, C
classesy.=0. In the literature it has been argued that in two _ (O), driven Cp=0, C,=0.05 (), and driven diffusi\v/e

and three dimensiony. is negative, but these arguments ¢ =1~ ¢ ,=0.05 (V) cases. Data are averaged over 50 runs and
rely on the fact the cluster size distribution would change tosystem sizes are $0 5x10°, and 16 for concentrations¢

a nonmonotonic function at the same pdit8]. As thisis  =0.05 (---), 0.1 (--), and 0.5(—), respectively.
clearly not the case in one dimension it is highly probable
that y,=0 in higher dimensions, too. using the scaling function of diffusion-limited aggregation

The corresponding FDCA simulations are done usingor y=—0.5 givesA~0.2. Equation2) gives the crossover
Cp=0. Figure 3 shows for this case also the dynamic exposizes 3, 4, and 10 for concentratiogs=0.05, 0.1, and 0.5,
nent as a function of the field exponent together with therespectively. These values agree reasonably well with the
mean-field prediction. The agreement is excellent except fosimulations as can be seen from Fig. 5.
6>0.3, for which values the asymptotic regime has not been
reached.s=0 is a special point: gll the clusters move v_vith V. DISCUSSION
the same velocity but the algorithm itself causes intrinsic
diffusion, resulting in the standard random walk val(e The results of our study are summarized in Fig. 6, which
=0)=1/2. shows the dynamic phase diagram with four different re-

As in the purely diffusive case, the cluster size distribu-gions. The aggregation is dominated by the field or the dif-
tion exhibits scale invarianceg(t)=S(t) 2g(s/S(t)) but fusion. At the phase bounda§=y—1 the two processes
now with a bell-shaped scaling functi(gix)~exp(—x‘|“‘) give the same dynamic exponent. It is unclear which one of
asx—0 (see Fig. 2 Thus FDCA belongs to class Ill. No the aggregation mechanisms determines the asymptotic scal-
indication of belonging to class Il is seen in the range ing behavior at the boundary. The diffusive phase is split into
—1.5<6=<0.7, in contradiction with the result of mean-field two subphases according to the dominating aggregation
theory. The absence of the transition shows that although th@echanism. The dynamics may also be so fast that the sys-
mean-field analysis gives the correct dynamic exponent item gels in a finite time.
fails in the case of the scaling function. This is not surprising
since the spatial fluctuations expected to be important in low
dimensions are completely neglected in Ed). Further-
more, for§>0 the probability for collisions of large clusters
with large ones is relatively small compared to large-small
collisions, since the decisive factor is the velocity difference,
not the high mobility of large clusters.

The cases=y=0 of FDCA is, interestingly enough, re-
lated to a driven diffusive Ising syste(®DS). The low tem- -
perature coarsening in an Ising chain with conserved magnecwc
tization and subject to a small external force can be mappec
almost exactly to the diffusion of domains with a size-
independent diffusion constafit4]. The fact that the map-
ping is not quite one to one is reflected in the behavior of -3
dimers in the DDS. They perform long-range hopping, which
results in another characteristic length scale in the problen
[15]. As a consequence, the domain length distribution does

. ) . -3 -2 -1 0 1 2 3 4
not obey the usual dynamic scaling for small cluster sizes as v

it does in FDCA, although the domain size distributions are

otherwise practically the sanjé5|. FIG. 6. The phase diagram in one dimension. Roman numbers

Figure 5 shows the crossover from diffusion-dominatedindicate the class of the aggregation process. Aggregation is domi-
growth to field-dominated growth for three different concen-nated by diffusion(light gray), the field (dark gray, or a gelation
trations. Estimating the unknown parameterin Eq. (2) transition (white).
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Although this paper has considereld=1, we can also boundaries would be an interesting problem also when it
discuss thel>1 case. Here, complications arise because theomes to applications to experiments.
clusters may have a fractal structure. For field-driven aggre- In conclusion, we have studied one-dimensional driven
gation the clusters will in any case become anisotropic withdiffusive cluster-cluster aggregation. We have shown how
a preferred orientation in the field direction. We believe boththe scaling function depends on the cluster mobilities with
of these complications affect only the phase boundaries dfiiffusive or ballistic dynamics, or both. For the field-
the dynamic phase diagram but leave its general structurdominated case the dynamic exponent can be obtained from
invariant if temporal scaling can be assumed. One particulasimple mean-field calculations, which together with the
issue is the existence of a field-dominated phase with a scasimulation results may be used to obtain the phase bound-
ing function belonging to class Il. Comparison of the mean-aries in the dynamic phase diagram. This shows four differ-
field approach and simulations in higher dimensions is lefent phases in the aggregation depending on the relative
for a forthcoming study. The exact location of the phasestrengths of the diffusion and the field.

[1] P. Meakin, Phys. Sc#6, 295(1992. [9] S. Miyazima, P. Meakin, and F. Family, Phys. Rev3@ 1421
[2] C. Allain, M. Cloitre, and F. Parisse, J. Colloid Interface Sci. (1987.
178 411(1996. [10] M. Kolb, Phys. Rev. Lett53, 1653(1984.
[3] M. von Smoluchowski, Z. Phy<7, 585(1916. [11] A.-L. Barabai and H. E. Stanleykractal Concepts in Surface
[4] P. G. J. van Dongen and M. H. Ernst, Phys. Rev. L&4. Growth, 1st ed.(Cambridge University Press, Cambridge, UK,
1396(1985. 1995.
[5] S. Cueille and C. Sire, Phys. Rev.55, 5465(1997). [12] J. L. Spouge, Phys. Rev. Le&0, 871(1988.
[6] P. G. J. van Dongen, Phys. Rev. Lé88, 1281(1989. [13] P. Meakin, T. Vicsek, and F. Family, Phys. Rev.3®, 564
[7] R. M. Ziff, E. D. McGrady, and P. Meakin, J. Chem. Phgg, (1985.
5269(1985. [14] S. J. Cornell and A. J. Bray, Phys. Rev5E, 1153(1996.

[8] K. Kang, S. Redner, P. Meakin, and F. Leyvraz, Phys. Rev. A[15] V. Spirin, P. L. Krapivsky, and S. Redner, Phys. Rev6E
33, 1171(1986. 2670(1999.



