12,213 research outputs found

    Automated Reasoning and Presentation Support for Formalizing Mathematics in Mizar

    Full text link
    This paper presents a combination of several automated reasoning and proof presentation tools with the Mizar system for formalization of mathematics. The combination forms an online service called MizAR, similar to the SystemOnTPTP service for first-order automated reasoning. The main differences to SystemOnTPTP are the use of the Mizar language that is oriented towards human mathematicians (rather than the pure first-order logic used in SystemOnTPTP), and setting the service in the context of the large Mizar Mathematical Library of previous theorems,definitions, and proofs (rather than the isolated problems that are solved in SystemOnTPTP). These differences poses new challenges and new opportunities for automated reasoning and for proof presentation tools. This paper describes the overall structure of MizAR, and presents the automated reasoning systems and proof presentation tools that are combined to make MizAR a useful mathematical service.Comment: To appear in 10th International Conference on. Artificial Intelligence and Symbolic Computation AISC 201

    The Shears Mechanism in 142Gd in the Skyrme-Hartree-Fock Method with the Tilted-Axis Cranking

    Get PDF
    We report on the first Skyrme-Hartree-Fock calculations with the tilted-axis cranking in the context of magnetic rotation. The mean field symmetries, differences between phenomenological and self-consistent methods and the generation of shears-like structures in the mean field are discussed. Significant role of the time-odd spin-spin effective interaction is pointed out. We reproduce the shears mechanism, but quantitative agreement with experiment is rather poor. It may have to do with too large core polarization, lack of pairing correlations or properties of the Skyrme force.Comment: Presented at the XXVII Mazurian Lakes School of Physics, September 2-9 2001, Krzyze, Poland, Submitted to Acta Physica Polonic

    Improving the Sensitivity of Advanced LIGO Using Noise Subtraction

    Get PDF
    This paper presents an adaptable, parallelizable method for subtracting linearly coupled noise from Advanced LIGO data. We explain the features developed to ensure that the process is robust enough to handle the variability present in Advanced LIGO data. In this work, we target subtraction of noise due to beam jitter, detector calibration lines, and mains power lines. We demonstrate noise subtraction over the entirety of the second observing run, resulting in increases in sensitivity comparable to those reported in previous targeted efforts. Over the course of the second observing run, we see a 30% increase in Advanced LIGO sensitivity to gravitational waves from a broad range of compact binary systems. We expect the use of this method to result in a higher rate of detected gravitational-wave signals in Advanced LIGO data.Comment: 15 pages, 6 figure

    ENIGMA: Efficient Learning-based Inference Guiding Machine

    Full text link
    ENIGMA is a learning-based method for guiding given clause selection in saturation-based theorem provers. Clauses from many proof searches are classified as positive and negative based on their participation in the proofs. An efficient classification model is trained on this data, using fast feature-based characterization of the clauses . The learned model is then tightly linked with the core prover and used as a basis of a new parameterized evaluation heuristic that provides fast ranking of all generated clauses. The approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing a large increase of E's performance.Comment: Submitted to LPAR 201

    Do Lognormal Column-Density Distributions in Molecular Clouds Imply Supersonic Turbulence?

    Full text link
    Recent observations of column densities in molecular clouds find lognormal distributions with power-law high-density tails. These results are often interpreted as indications that supersonic turbulence dominates the dynamics of the observed clouds. We calculate and present the column-density distributions of three clouds, modeled with very different techniques, none of which is dominated by supersonic turbulence. The first star-forming cloud is simulated using smoothed particle hydrodynamics (SPH); in this case gravity, opposed only by thermal-pressure forces, drives the evolution. The second cloud is magnetically subcritical with subsonic turbulence, simulated using nonideal MHD; in this case the evolution is due to gravitationally-driven ambipolar diffusion. The third cloud is isothermal, self-gravitating, and has a smooth density distribution analytically approximated with a uniform inner region and an r^-2 profile at larger radii. We show that in all three cases the column-density distributions are lognormal. Power-law tails develop only at late times (or, in the case of the smooth analytic profile, for strongly centrally concentrated configurations), when gravity dominates all opposing forces. It therefore follows that lognormal column-density distributions are generic features of diverse model clouds, and should not be interpreted as being a consequence of supersonic turbulence.Comment: 6 pages, 6 figures, accepted for publication in MNRA

    Parallelization of chip-based fluorescence immuno-assays with quantum-dot labelled beads

    Get PDF
    This paper presents an optical concept for the read-out of a parallel, bead-based fluorescence immunoassay conducted on a lab-on-a-disk platform. The reusable part of the modular setup comprises a detection unit featuring a single LED as light source, two emission-filters, and a color CCD-camera as standard components together with a spinning drive as actuation unit. The miniaturized lab-on-a-disk is devised as a disposable. In the read-out process of the parallel assay, beads are first identified by the color of incorporated quantum dots (QDs). Next, the reaction-specific fluorescence signal is quantified with FluoSpheres-labeled detection anti-bodies. To enable a fast and automated read-out, suitable algorithms have been implemented in this work. Based on this concept, we successfully demonstrated a Hepatitis-A assay on our disk-based lab-on-a-chip

    TDC Chip and Readout Driver Developments for COMPASS and LHC-Experiments

    Get PDF
    A new TDC-chip is under development for the COMPASS experiment at CERN. The ASIC, which exploits the 0.6 micrometer CMOS sea-of-gate technology, will allow high resolution time measurements with digitization of 75 ps, and an unprecedented degree of flexibility accompanied by high rate capability and low power consumption. Preliminary specifications of this new TDC chip are presented. Furthermore a FPGA based readout-driver and buffer-module as an interface between the front-end of the COMPASS detector systems and an optical S-LINK is in development. The same module serves also as remote fan-out for the COMPASS trigger distribution and time synchronization system. This readout-driver monitors the trigger and data flow to and from front-ends. In addition, a specific data buffer structure and sophisticated data flow control is used to pursue local pre-event building. At start-up the module controls all necessary front-end initializations.Comment: 5 pages, 4 figure

    Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry

    Full text link
    We report the use of an atomic magnetometer based on nonlinear magneto-optical rotation with frequency modulated light (FM NMOR) to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample (1.71.7 cm3^3 at a pressure of 55 bar, natural isotopic abundance, polarization 1%), prepared remotely to the detection apparatus, is measured with an atomic sensor (which is insensitive to the leading field of 0.45 G applied to the sample; an independent bias field at the sensor is 140ÎŒ140 \muG). An average magnetic field of ∌10\sim 10 nG induced by the xenon sample on the 10-cm diameter atomic sensor is detected with signal-to-noise ratio ∌10\sim 10, limited by residual noise in the magnetic environment. The possibility of using modern atomic magnetometers as detectors of nuclear magnetic resonance and in magnetic resonance imaging is discussed. Atomic magnetometers appear to be ideally suited for emerging low-field and remote-detection magnetic resonance applications.Comment: 4 pages, 4 figure

    Denominators of Eisenstein cohomology classes for GL_2 over imaginary quadratic fields

    Full text link
    We study the arithmetic of Eisenstein cohomology classes (in the sense of G. Harder) for symmetric spaces associated to GL_2 over imaginary quadratic fields. We prove in many cases a lower bound on their denominator in terms of a special L-value of a Hecke character providing evidence for a conjecture of Harder that the denominator is given by this L-value. We also prove under some additional assumptions that the restriction of the classes to the boundary of the Borel-Serre compactification of the spaces is integral. Such classes are interesting for their use in congruences with cuspidal classes to prove connections between the special L-value and the size of the Selmer group of the Hecke character.Comment: 37 pages; strengthened integrality result (Proposition 16), corrected statement of Theorem 3, and revised introductio
    • 

    corecore