65 research outputs found

    A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis

    Get PDF
    The Mycobacterium tuberculosis TetR-type regulator Rv3574 has been implicated in pathogenesis as it is induced in vivo, and genome-wide essentiality studies show it is required for infection. As the gene is highly conserved in the mycobacteria, we deleted the Rv3574 orthologue in Mycobacterium smegmatis (MSMEG_6042) and used real-time quantitative polymerase chain reaction and microarray analyses to show that it represses the transcription both of itself and of a large number of genes involved in lipid metabolism. We identified a conserved motif within its own promoter (TnnAACnnGTTnnA) and showed that it binds as a dimer to 29 bp probes containing the motif. We found 16 and 31 other instances of the motif in intergenic regions of M. tuberculosis and M. smegmatis respectively. Combining the results of the microarray studies with the motif analyses, we predict that Rv3574 directly controls the expression of 83 genes in M. smegmatis, and 74 in M. tuberculosis. Many of these genes are known to be induced by growth on cholesterol in rhodococci, and palmitate in M. tuberculosis. We conclude that this regulator, designated elsewhere as kstR, controls the expression of genes used for utilizing diverse lipids as energy sources, possibly imported through the mce4 system

    Biochemical and structural characterization of mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target.

    Get PDF
    The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å

    Identification of Novel Mt-Guab2 Inhibitor Series Active against M. tuberculosis

    Get PDF
    Tuberculosis (TB) remains a leading cause of mortality worldwide. With the emergence of multidrug resistant TB, extensively drug resistant TB and HIV-associated TB it is imperative that new drug targets be identified. The potential of Mycobacterium tuberculosis inosine monophosphate dehydrogenase (IMPDH) as a novel drug target was explored in the present study. IMPDH exclusively catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP) in the presence of the cofactor nicotinamide adenine dinucleotide (NAD+). Although the enzyme is a dehydrogenase, the enzyme does not catalyze the reverse reaction i.e. the conversion of XMP to IMP. Unlike other bacteria, M. tuberculosis harbors three IMPDH-like genes, designated as Mt-guaB1, Mt-guaB2 and Mt-guaB3 respectively. Of the three putative IMPDH's, we previously confirmed that Mt-GuaB2 was the only functional ortholog by characterizing the enzyme kinetically. Using an in silico approach based on designed scaffolds, a series of novel classes of inhibitors was identified. The inhibitors possess good activity against M. tuberculosis with MIC values in the range of 0.4 to 11.4 µg mL−1. Among the identified ligands, two inhibitors have nanomolar Kis against the Mt-GuaB2 enzyme

    A critical review of carbon nanotube-based surface coatings

    No full text
    The emergence of carbon nanotubes (CNT) has encouraged widespread interest among researchers with many pioneering applications achieved by exploiting the unique properties of carbon allotropes. This article is a general overview of the diversity of applications of CNT and their various forms, particularly, in the area of surface coatings. The different methods, which have been developed and practiced in the preparation, dispersion, functionalization, and metallization of CNT, are elucidated. The composite coatings have been prepared using electrochemical methods such as electroplating and electroless plating. The review presents the mechanical, electrochemical, corrosion, thermal, electrical conduction, tribological, biosensing, magnetic, and microwave absorbing properties of CNT-based composites. The incorporation of CNT substantially affects the coating performance, and the level of influence can be befittingly adjusted to suit the application needs. Various charac­ terization studies have been conducted on these coatings, emphasizing their properties. The potential of CNT as a versatile material in catering to diverse industrial applications has placed the carbon allotrope among the elite group of materials, drawing the attention of researchers to widen their scope of utilization. The challenges, problems, and ways of the overcoming are also addressed in this review.</p

    Disaccharide analogs as probes for glycosyltransferases in Mycobacterium tuberculosis

    No full text
    Glycosyltransferases (GTs) play a crucial role in mycobacterial cell wall biosynthesis and are necessary for the survival of mycobacteria. Hence, these enzymes are potential new drug targets for the treatment of tuberculosis (TB), especially multiple drug-resistant TB (MDR-TB). Herein, we report the efficient syntheses of Araf(a 1→5)Araf, Galf(β 1→5)Galf and Galf(β 1→6)Galf disaccharides possessing a 5-N,N-dimethylaminonaphthalene-1-sulfonamidoethyl (dansyl) unit that were prepared as fluorescent disaccharide acceptors for arabinosyl- and galactosyl-transferases respectively. Such analogs may offer advantages relative to radiolabeled acceptors or donors for studying the enzymes and for assay development and compound screening. Additionally, analogs possessing a 5-azidonaphthalene-1-sulfonamidoethyl unit, were prepared as photoaffinity probes for their potential utility in studying active site labeling of the GTs (arabinosyl and galactosyl) in Mycobacterium tuberculosis (MTB). Beyond their preparation, initial biological testing and kinetic analysis of these disaccharides as acceptors towards glycosyltransferases is also presented

    Synthesis of symmetrical C- and pseudo-symmetrical O-linked disaccharide analogs for arabinosyltransferase inhibitory activity in Mycobacterium tuberculosis

    No full text
    Herein we report the synthesis of symmetrical C-linked and pseudo-symmetrical O-linked disaccharides structurally related to Araf motifs present in the cell wall of MTB. Their activity in a competition-based arabinosyltransferase assay using [(14)C]-DPA as the glycosyl donor is also presented. In addition, in vitro inhibitory activity for the disaccharides was determined in a colorimetric broth microdilution assay system against MTB H(37)Ra and Mycobacterium avium
    corecore