134 research outputs found

    When planning fails: Individual differences and error-related brain activity in problem solving.

    Get PDF
    The neuronal processes underlying correct and erroneous problem solving were studied in strong and weak problem-solvers using functional magnetic resonance imaging (fMRI). During planning, the right dorsolateral prefrontal cortex was activated, and showed a linear relationship with the participants' performance level. A similar pattern emerged in right inferior parietal regions for all trials, and in anterior cingulate cortex for erroneously solved trials only. In the performance phase, when the pre-planned moves had to be executed by means of an fMRI-compatible computer mouse, the right dorsolateral prefrontal cortex was again activated jointly with right parahippocampal cortex, and displayed a similar positive relationship with the participants' performance level. Incorrectly solved problems elicited stronger bilateral prefrontal and left inferior parietal activations than correctly solved trials. For both individual ability and trial-specific performance, our results thus demonstrate the crucial involvement of right prefrontal cortex in efficient visuospatial planning

    Z2-Thurston norm and complexity of 3-manifolds, II

    Get PDF
    In this sequel to earlier papers by three of the authors, we obtain a new bound on the complexity of a closed 3-manifold, as well as a characterisation of manifolds realising our complexity bounds. As an application, we obtain the first infinite families of minimal triangulations of Seifert fibred spaces modelled on Thurston's geometry SL2(R)˜

    Photoinduced oxidation of a water-soluble manganese(III) porphyrin

    Full text link

    Functional MRI in Patients with Band Heterotopia

    Get PDF
    Functional activation associated with a motor task (fist movements) was studied in three patients with band heterotopias by fMRI. In two patients, additional visual fMRI studies were performed using a flickering checkerboard stimulus. In all patients activation of the outer cortex and of the inner neuronal band could be found during performance of the motor task. Visual stimulation elicited a normal activation pattern without activation of the ectopic neuronal layer in one patient; in another patient activation extended toward the ventricular wall, i.e., along the route of embryonic neuronal migration. The potential participation of ectopic neuronal tissue in physiologic cerebral functions is of clinical impact in patients with neuronal heterotopias suffering from medically intractable seizures prior to epilepsy surgery

    Combinatorial 3-manifolds with transitive cyclic symmetry

    Full text link
    In this article we give combinatorial criteria to decide whether a transitive cyclic combinatorial d-manifold can be generalized to an infinite family of such complexes, together with an explicit construction in the case that such a family exists. In addition, we substantially extend the classification of combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices. Finally, a combination of these results is used to describe new infinite families of transitive cyclic combinatorial manifolds and in particular a family of neighborly combinatorial lens spaces of infinitely many distinct topological types.Comment: 24 pages, 5 figures. Journal-ref: Discrete and Computational Geometry, 51(2):394-426, 201

    Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue

    Get PDF
    Background. Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods. Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results. The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions. Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis

    Acute alcohol does not impair attentional inhibition as measured with Stroop interference scores but impairs Stroop performance

    Get PDF
    Rationale: Inhibition is a core executive function and refers to the ability to deliberately suppress attention, behavior, thoughts, and/or emotions and instead act in a specific manner. While acute alcohol exposure has been shown to impair response inhibition in the stop-signal and Go/NoGo tasks, reported alcohol effects on attentional inhibition in the Stroop task are inconsistent. Notably, studies have operationalized attentional inhibition variably and there has been intra- and inter-individual variability in alcohol exposure. Objective: This study aimed to examine the acute effects of alcohol on attentional inhibition, considering previous limitations. Methods: In a single-blind, cross-over design, 40 non-dependent participants with a medium-to-high risk drinking behavior performed a Counting Stroop task (CST) under a baseline and an arterial blood alcohol concentration (aBAC) clamp at 80 mg%. Attentional inhibition was assessed as the alteration of reaction times (RT), error rates (ER), and inverse efficiency scores (IES) between incongruent and congruent trials (interference score). Stroop performance was also assessed regardless of trial-type. Results: Compared to saline, acute alcohol exposure via an aBAC clamp did not affect CST interference scores but increased RTs and IES in both incongruent and congruent trials. Conclusions: Attentional inhibition (Stroop interference score) was not impaired by clamped moderate alcohol exposure. Acute alcohol impaired Stroop performance evidenced by a general increase in response times. Our findings suggest that response and attentional inhibition do not share the same neurocognitive mechanisms and are affected differently by alcohol. Results could also be explained by automated behaviors known to be relatively unaffected by acute alcohol

    Effects of moderate alcohol levels on default mode network connectivity in heavy drinkers

    Get PDF
    Background It is well established that even moderate levels of alcohol affect cognitive functions such as memory, self-related information processing, and response inhibition. Nevertheless, the neural mechanisms underlying these alcohol-induced changes are still unclear, especially on the network level. The default mode network (DMN) plays an important role in memory and self-initiated mental activities; hence, studying functional interactions of the DMN may provide new insights into the neural mechanisms underlying alcohol-related changes. Methods We investigated resting-state functional connectivity (rsFC) of the DMN in a cohort of 37 heavy drinkers at a breath alcohol concentration of 0.8 g/kg. Alcohol and saline were infused in a single-blind crossover design. Results Intranetwork connectivity analyses revealed that participants showed significantly decreased rsFC of the right hippocampus and right middle temporal gyrus during acute alcohol exposure. Moreover, follow-up analyses revealed that these rsFC decreases were more pronounced in participants who reported stronger craving for alcohol. Exploratory internetwork connectivity analyses of the DMN with other resting-state networks showed no significant alcohol-induced changes, but suffered from low statistical power. Conclusions Our results indicate that acute alcohol exposure affects rsFC within the DMN. Functionally, this finding may be associated with impairments in memory encoding and self-referential processes commonly observed during alcohol intoxication. Future resting-state functional magnetic resonance imaging studies might therefore also investigate memory function and test whether DMN-related connectivity changes are associated with alcohol-induced impairments or craving
    corecore