109 research outputs found

    Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes

    Get PDF
    The Génolevures online database (http://cbi.labri.fr/Genolevures/ and http://genolevures.org/) provides exploratory tools and curated data sets relative to nine complete and seven partial genome sequences determined and manually annotated by the Génolevures Consortium, to facilitate comparative genomic studies of Hemiascomycete yeasts. The 2008 update to the Génolevures database provides four new genomes in complete (subtelomere to subtelomere) chromosome sequences, 50 000 protein-coding and tRNA genes, and in silico analyses for each gene element. A key element is a novel classification of conserved multi-species protein families and their use in detecting synteny, gene fusions and other aspects of genome remodeling in evolution. Our purpose is to release high-quality curated data from complete genomes, with a focus on the relations between genes, genomes and proteins

    The primary structure of the aspartate transcarbamylase region of the URA2 gene product in Saccharomyces cerevisiae. Features involved in activity and nuclear localization.

    Get PDF
    The yeast URA2 locus encodes a multifunctional protein which possesses the carbamylphosphate synthetase and aspartate transcarbamylase activities and which catalyzes the first two reactions of the pyrimidine pathway. We report here the nucleotide sequence of the central and the 3' region of this locus. The latter encodes that part of the multifunctional protein which has the aspartate transcarbamylase activity. The deduced amino acid sequence shows a high degree of homology with the known aspartate transcarbamylases of various organisms from Escherichia coli to mammals. The amino acid residues that have been shown to be involved in the catalytic site of the E. coli enzyme are all conserved suggesting that, in the more complex structure of the yeast protein, the catalytic sites are also located at subunit interfaces. There is also an important conservation of the amino acid pairs that, in E. coli, are implicated in intra- and interchain interactions. As well as the oligomeric structure suggested by these two features, the three-dimensional structure of the yeast enzyme must also be organized to account for the channeling of carbamylphosphate, from the carbamylphosphate synthetase catalytic site to that of aspartate transcarbamylase, and for the concomitant feedback inhibition of the two activities by the end product UTP. The URA2 gene product was shown to be localized in the nucleus. With the aim of identifying the regions that may be involved in this transport, we have determined by electron microscopy the subcellular distribution of aspartate transcarbamylase in three strains expressing different fragments of the URA2 locus. In the first strain the protein lacks 190 residues at the N terminus, but accumulates normally in the nucleus. In the second strain the protein lacks 382 residues in the central part and seems impaired in the nuclear transport process. In the third strain the 476-residue protein encoded by the 3' region of URA2 locus and catalyzing the aspartate transcarbamylase reaction is able by itself to migrate to and accumulate in the nucleus. This suggests that two regions are involved in the nuclear accumulation. On the basis of their conservation in analogous proteins of other eukaryotes and their similarity to sequences already identified as nuclear location signals, a sequence in the central region of the protein and two short sequences in the C-terminal region are good candidates for the nuclear location signal involved in the targeting of the URA2 product.comparative studyjournal article1989 May 15importe

    CYGD: the Comprehensive Yeast Genome Database

    Get PDF
    The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular networks include metabolic and regulatory pathways, signal transduction and transport processes as well as co-regulated gene clusters. As more yeast genomes are published, their annotation becomes greatly facilitated using S.cerevisiae as a reference. CYGD provides a way of exploring related genomes with the aid of the S.cerevisiae genome as a backbone and SIMAP, the Similarity Matrix of Proteins. The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed

    Genes Selectively Up-Regulated by Pheromone in White Cells Are Involved in Biofilm Formation in Candida albicans

    Get PDF
    To mate, MTL-homozygous strains of the yeast pathogen Candida albicans must switch from the white to opaque phase. Mating-competent opaque cells then release pheromone that induces polarization, a G1 block and conjugation tube formation in opaque cells of opposite mating type. Pheromone also induces mating-incompetent white cells to become adhesive and cohesive, and form thicker biofilms that facilitate mating. The pheromone response pathway of white cells shares the upstream components of that of opaque cells, but targets a different transcription factor. Here we demonstrate that the genes up-regulated by the pheromone in white cells are activated through a common cis-acting sequence, WPRE, which is distinct from the cis-acting sequence, OPRE, responsible for up-regulation in opaque cells. Furthermore, we find that these white-specific genes play roles in white cell biofilm formation, and are essential for biofilm formation in the absence of an added source of pheromone, suggesting either an autocrine or pheromone-independent mechanism. These results suggest an intimate, complex and unique relationship between switching, mating and MTL-homozygous white cell biofilm formation, the latter a presumed virulence factor in C. albicans

    Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically.</p> <p>Results</p> <p>We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in <it>Saccharomyces cerevisiae</it>. We found additional genes for the mating pheromone a-factor in six species including <it>Kluyveromyces lactis</it>.</p> <p>Conclusions</p> <p>SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external information has been added may prove useful in other settings.</p

    Studies on transcription of the yeast URA2 gene.

    No full text
    The multifunctional protein carbamoylphosphate synthetase (CPSase)-aspartate transcarbamylase (ATCase) encoded by the URA2 gene catalyses the first two steps of the yeast pyrimidine pathway. An excess of the final product, the intracellular UTP (uridine triphosphate), inhibits both the transcription of the URA2 gene and the enzymatic activities. Results presented in this paper suggest that transcription of URA2 is negatively regulated (repression-derepression) and establish that this regulation is less efficient in the flow of the pyrimidine pathway than feedback inhibition.journal article1990 Octimporte

    Involvement of very short DNA tandem repeats and the influence of the RAD52 gene on the occurrence of deletions in Saccharomyces cerevisiae.

    No full text
    Chromosomal rearrangements, such as deletions, duplications, or Ty transposition, are rare events. We devised a method to select for such events as Ura(+) revertants of a particular ura2 mutant. Among 133 Ura(+) revertants, 14 were identified as the result of a deletion in URA2. Of seven classes of deletions, six had very short regions of identity at their junctions (from 7 to 13 bp long). This strongly suggests a nonhomologous recombination mechanism for the formation of these deletions. The total Ura(+) reversion rate was increased 4.2-fold in a rad52Delta strain compared to the wild type, and the deletion rate was significantly increased. All the deletions selected in the rad52Delta context had microhomologies at their junctions. We propose two mechanisms to explain the occurrence of these deletions and discuss the role of microhomology stretches in the formation of fusion proteins.journal articleresearch support, non-u.s. gov't2000 Octimporte
    corecore