19 research outputs found

    Life cycle of Harmonia axyridis in central Europe

    Get PDF
    The development and reproduction, and maximum number of generations across seasons were ascertained for populations of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Central Europe. Number of generations was calculated using the thermal characteristics of development and summation of daily average air temperatures, in 2007–2016. This species can produce 2–3 generations per year. However, there is insufficient time for it to achieve its full reproductive potential. Delayed emigration from hibernacula (late April) shortened the period of seasonal activity by 1–6%. Breeding occurred from May to mid September. Oviposition continued into late summer, which left insufficient time for the late-hatching immatures to complete their development before the onset of winter. A high mobility, opportunistic use of prey patches and weak tendency to enter dormancy provide the potential for population increase by extending the period of development of immatures at the risk of failure if the cold period comes early

    The Invasive Box Tree Moth Five Years after Introduction in Slovakia: Damage Risk to Box Trees in Urban Habitats

    Get PDF
    The box tree moth Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) is an invasive species in Europe and a serious pest of box trees (Buxus spp.). In Slovakia, Central Europe, it was first reported in 2012 within the low elevation region with a warm climate. We hypothesize that the cold mountain region of Slovakia would provide less suitable conditions for the spread of this species, indicated by no or only slight damage to box trees. Five years after C. perspectalis was first recorded in Slovakia, we assessed the probability of occurrence of the moth and the probability of damage to box trees (Buxus sempervirens) by its larvae, using temperature and altitude data as predictors. In June and July 2017, at 156 locations (towns and villages) between the altitudes of 109 and 888 m, we recorded damage and categorized the intensity of damage to box trees by C. perspectalis using a four-point scale. Box trees infested by C. perspectalis were recorded in most locations at altitudes between 110 and 400 m with the mean annual temperature varying between 10.5 and 7.9 °C. High damage to box trees was found in locations up to 340 m a.s.l. characterized by mean annual temperatures above 8.5 °C. Our results suggested high probability (>60%) of any damage to box trees for the area up to approximately 300 m a.s.l. (mean annual temperature above 8.4 °C), and high probability (>60%) of high damage for the area up to approximately 250 m a.s.l. (mean annual temperature above 9 °C). The area where damage to box trees was predicted using the altitude showed great overlap with the area predicted using the mean annual temperature. The area with the probability of any damage was only slightly larger than the area with the probability of high damage

    Scots pine forest in Central Europe as a habitat for Harmonia axyridis: temporal and spatial patterns in the population of an alien ladybird

    Get PDF
    Understanding of habitat favourability has wide relevance to the invasion biology of alien species. We studied the seasonal dynamics of the alien ladybird Harmonia axyridis (Coleoptera: Coccinellidae) in monoculture Scots pine forest stands in south-west Slovakia, Central Europe, from April 2013 to March 2015. Adult H. axyridis were collected monthly across seven randomly selected pine stands of different ages and canopy closure, from the lower branches of pine trees, and larvae were recorded qualitatively. Adults were recorded all year round, most abundantly in November and least abundantly in February. The relationship between the abundance of H. axyridis and selected forest stand characteristics was modelled using the negative binomial Generalized Additive Model with penalized spline component in month (seasonality) effect, year, canopy closure and age effects and the random effect of forest stand (sample area effect). The abundance of H. axyridis was significantly influenced by the age of stand and seasonality (with month granularity) for both closed and open canopy stands, whereas the effects of canopy closure and sample area were not significant. The bimodal pattern of seasonal dynamics of H. axyridis on Scots pine was common for closed and open canopy stands, with two peaks reflecting the cyclic movement of the species from and to overwintering sites. Harmonia axyridis utilized certain pine stands preferably for foraging during the growing season and certain stands for refuge during winter. The ladybirds were found in highest numbers in the 15 year old closed canopy stand (overwintering site). The occurrence of both adults and larvae in most stands indicated a suitability of Scots pine forest for ladybird breeding. The model of year-round dynamics of H. axyridis has been presented for the first time within the invaded range of the ladybird in Europe

    Development of the European Ladybirds Smartphone Application: A Tool for Citizen Science

    Get PDF
    Wildlife observations submitted by volunteers through citizen science initiatives are increasingly used within research and policy. Ladybirds are popular and charismatic insects, with most species being relatively easy to identify from photographs. Therefore, they are considered an appropriate taxonomic group for engaging people through citizen science initiatives to contribute long-term and large-scale datasets for use in many different contexts. Building on the strengths of a mass participation citizen science survey on ladybirds in the United Kingdom, we have developed a mobile application for ladybird recording and identification across Europe. The main aims of the application are to: (1) compile distribution data for ladybird species throughout Europe, and use this to assess changes in distribution over time; (2) connect and engage people in nature and increase awareness about the diversity and ecological importance of ladybirds. In developing the application we first constructed a database including ladybird species from the United Kingdom, Czech Republic, Slovakia, Italy, Belgium, and Portugal with associated information on relevant morphological features (e.g., size, main color, pronotum pattern) to inform identification. Additionally, the species were assessed on the basis of probability of occurrence within each country which enables users to reduce the number of species to only those with relevance to the location of the recorder. This is amongst the first collaborative citizen science approaches aimed at involving participants across Europe in recording a group of insects. In the near future, we aim to expand the use of the application to all countries in Europe

    Factors determining variation in colour morph frequencies in invasive Harmonia axyridis populations

    Get PDF
    The Harlequin ladybird Harmonia axyridis Pallas, native to eastern Asia, is an invasive, non-native species that has recently achieved an almost worldwide distribution. A conspicuous feature of this species is colour polymorphism of the elytra. In its native area, the populations consist of a recessive non-melanic morph, several dominant melanic morphs and small numbers of other (rare) morphs. The morph proportions in native populations have been intensively studied and vary with geographic area, climate and time. In contrast, colour polymorphism in invaded regions has been little studied. We examine and try to account for the morph frequencies observed across the different invaded regions. In America, monomorphic populations consist of the non-melanic morphs while European populations contain also melanic morphs. In particular geographic areas of Europe, the average percentage of the non-melanic morphs varied between 78 and 99%. It was highest in the lowlands of northern Italy and central and northern Europe and decreased in the Alps and western (Spain, UK) and eastern (southeast Russia) margins of the recently invaded area. In central Europe the frequency of the non-melanic morphs decreased over the course of the year but increased over the years from 2010 to 2018. The local differences might thus arise through gradual change of the morph composition of the founder invasive, non-native population. However, the variation in non-melanic morph frequency was not correlated with climatic characteristics that might affect coccinellid polymorphism. The observed rate of change in morph proportions in our data was too small to explain the diversification of what was supposedly a uniform invasive, non-native population at the point of introduction
    corecore