1,633 research outputs found

    Micro-electroforming metallic bipolar electrodes for mini-DMFC stacks

    Get PDF
    This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 micrometers thick and 500 micrometers wide were firstly fabricated in a negative photoresist onto a stainless steel plate. Copper micro-electroforming was used to replicate the micro-fluidic channels mold. Following by sputtering silver (Ag) with 1.2 micrometers thick, the metallic bipolar plates were completed. The silver layer is used for corrosive resistance. The completed mini-DMFC stack is a 2x2 cm2 fuel cell stack including a 1.5x1.5 cm2 MEA (membrane electrode assembly). Several MEAs were assembly into mini-DMFC stacks using the completed metallic bipolar plates. All test results showed the metallic bipolar plates suitable for mini-DMFC stacks. The maximum output power density is 9.3mW/cm2 and current density is 100 mA/cm2 when using 8 vol. % methanol as fuel and operated at temperature 30 degrees C. The output power result is similar to other reports by using conventional graphite bipolar plates. However, conventional graphite bipolar plates have certain difficulty to be machined to such micro-fluidic channels. The proposed micro-electroforming metallic bipolar plates are feasible to miniaturize DMFC stacks for further portable 3C applications.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications

    Get PDF
    The earthquakes of November 1951 constitute the most destructive seismic episode in the recorded history of the Longitudinal Valley, eastern Taiwan. However, information about their source parameters is sparse. To understand the relationship between the 1951 ruptures and new interpretations of the regional neotectonic architecture of the Longitudinal Valley, we re-evaluated the November 1951 ruptures by analyzing old documents, reports and photographs, and by interviewing local residents who experienced the earthquake. As a result, we have revised significantly the rupture map previously published. We divide the surface ruptures from south to north into the Chihshang, Yuli, and Rueisuei sections. The first shock of the 1951 series probably resulted from the Chihshang rupture, and the second shock probably resulted from the Yuli and Rueisuei ruptures. The lengths of these ruptures indicate that the two shocks had similar magnitudes. The Chihshang and Rueisuei ruptures are along segments of the Longitudinal Valley fault, a left-lateral oblique fault along which the Coastal Range thrusts westward over the Longitudinal Valley. The Yuli rupture, on the other hand, appears to be part of a separate, left-lateral strike-slip Yuli fault, which traverses the middle of the Longitudinal Valley. The complex behavior of these structures and interaction between them are important in understanding the future seismic hazard of the area

    Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan

    Get PDF
    The Longitudinal Valley fault is a key element in the active tectonics of Taiwan. It is the principal structure accommodating convergence across one of the two active sutures of the Taiwan orogeny. To understand more precisely its role in the suturing process, we analyzed fluvial terraces along the Hsiukuluan River, which cuts across the Coastal Range in eastern Taiwan in the fault's hanging wall block. This allowed us to determine both its subsurface geometry and its long-term slip rate. The uplift pattern of the terraces is consistent with a fault-bend fold model. Our analysis yields a listric geometry, with dips decreasing downdip from about 50° to about 30° in the shallowest 2.5 km. The Holocene rate of dip slip of the fault is about 22.7 mm/yr. This rate is less than the 40 mm/yr rate of shortening across the Longitudinal Valley derived from GPS measurements. The discrepancy may reflect an actual difference in millennial and decadal rates of convergence. An alternative explanation is that the discrepancy is accommodated by a combination of slip on the Central Range fault and subsidence of the Longitudinal Valley floor. The shallow, listric geometry of the Longitudinal Valley fault at the Hsiukuluan River valley differs markedly from the deep listric geometry illuminated by earthquake hypocenters near Chihshang, 45 km to the south. We hypothesize that this fundamental along-strike difference in geometry of the fault is a manifestation of the northward maturation of the suturing of the Luzon volcanic arc to the Central Range continental sliver

    The Kinetics of Crystallization of Calcium Fluoride. A New Constant Composition Method

    Get PDF
    A new method is described for studying reproducibly, the kinetics of crystallization of calcium fluoride under conditions of constant solution composition. The method can be used even at very low supersaturation. The rate is proportional to the square of the supersaturation, over the range of relative supersaturation, S = 0.20 - 1.66. The results point to a surface controlled crystallization. The rate is markedly influenced by the presence of phosphate

    The Kinetics of Crystallization of Calcium Fluoride. A New Constant Composition Method

    Get PDF
    A new method is described for studying reproducibly, the kinetics of crystallization of calcium fluoride under conditions of constant solution composition. The method can be used even at very low supersaturation. The rate is proportional to the square of the supersaturation, over the range of relative supersaturation, S = 0.20 - 1.66. The results point to a surface controlled crystallization. The rate is markedly influenced by the presence of phosphate

    Biostratigraphic and magnetostratigraphic synthesis of the Celebes and Sulu Seas, Leg 124

    Get PDF
    During ODP Leg 124, late middle Eocene to Quaternary sediment sequences were recovered from 13 holes drilled at five sites in the Celebes and Sulu basins. Paleomagnetic measurements and biostratigraphic studies using calcareous nannofossils, planktonic and benthic foraminifers, radiolarians, and diatoms were completed and summarized here. Two Neogene sediment sections recovered in the Sulu Basin yielded excellent core recoveries and magnetic reversal records, allowing direct magnetobiostratigraphic correlations for the Pliocene and Quaternary at Site 768 and for the middle Miocene to Quaternary at Site 769. The interpolated ages of biohorizons are not consistent between sites and only a few of them are in good agreement with previous calibrations. The differences may be the results of redeposition by turbidity currents and selective dissolution of key fossils

    An interdisciplinary intervention for older Taiwanese patients after surgery for hip fracture improves health-related quality of life

    Get PDF
    Abstract Background The effects of intervention programs on health-related quality of life (HRQOL) of patients with hip fracture have not been well studied. We hypothesized that older patients with hip fracture who received our interdisciplinary intervention program would have better HRQOL than those who did not. Methods A randomized experimental design was used. Older patients with hip fracture (N = 162), 60 to 98 years old, from a medical center in northern Taiwan were randomly assigned to an experimental (n = 80) or control (n = 82) group. HRQOL was measured by the SF-36 Taiwan version at 1, 3, 6, and 12 months after discharge. Results The experimental group had significantly better overall outcomes in bodily pain (β = 9.38, p = 0.002), vitality (β = 9.40, p < 0.001), mental health (β = 8.16, p = 0.004), physical function (β = 16.01, p < 0.001), and role physical (β = 22.66, p < 0.001) than the control group at any time point during the first year after discharge. Physical-related health outcomes (physical functioning, role physical, and vitality) had larger treatment effects than emotional/mental- and social functioning-related health outcomes. Conclusions This interdisciplinary intervention program may improve health outcomes of elders with hip fracture. Our results may provide a reference for health care providers in countries using similar programs with Chinese/Taiwanese immigrant populations. Trial registration NCT01052636http://deepblue.lib.umich.edu/bitstream/2027.42/78259/1/1471-2474-11-225.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78259/2/1471-2474-11-225.pdfPeer Reviewe

    Characterization of grain boundaries in silicon

    Get PDF
    Zero-bias conductance and capacitance measurements at various temperatures were used to study trapped charges and potential barrier height at the boundaries. Deep-level transient spectroscopy (DLTS) was applied to measure the density of states at the boundary. A study of photoconductivity of grain boundaries in p-type silicon demonstrated the applicability of the technique in the measurement of minority carrier recombination velocity at the grain boundary. Enhanced diffusion of phosphorus at grain boundaries in three cast polycrystalline photovoltaic materials was studied. Enhancements for the three were the same, indicating that the properties of boundaries are similar, although grown by different techniques. Grain boundaries capable of enhancing the diffusion were found always to have strong recombination activities; the phenomena could be related to dangling bonds at the boundaries. Evidence that incoherent second-order twins of (111)/(115) type are diffusion-active is presented

    Erosion influences the seismicity of active thrust faults

    Get PDF
    International audienceAssessing seismic hazards remains one of the most challenging scientific issues in Earthsciences. Deep tectonic processes are classically considered as the only persistentmechanism driving the stress loading of active faults over a seismic cycle. Here we show via amechanical model that erosion also significantly influences the stress loading of thrust faultsat the timescale of a seismic cycle. Indeed, erosion rates of about B0.1–20mmyr1, asdocumented in Taiwan and in other active compressional orogens, can raise the Coulombstress by B0.1–10 bar on the nearby thrust faults over the inter-seismic phase. Masstransfers induced by surface processes in general, during continuous or short-lived andintense events, represent a prominent mechanism for inter-seismic stress loading offaults near the surface. Such stresses are probably sufficient to trigger shallow seismicity orpromote the rupture of deep continental earthquakes up to the surface
    corecore