9,338 research outputs found
Precession during merger 1: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger
The short gravitational wave signal from the merger of compact binaries
encodes a surprising amount of information about the strong-field dynamics of
merger into frequencies accessible to ground-based interferometers. In this
paper we describe a previously-unknown "precession" of the peak emission
direction with time, both before and after the merger, about the total angular
momentum direction. We demonstrate the gravitational wave polarization encodes
the orientation of this direction to the line of sight. We argue the effects of
polarization can be estimated nonparametrically, directly from the
gravitational wave signal as seen along one line of sight, as a slowly-varying
feature on top of a rapidly-varying carrier. After merger, our results can be
interpreted as a coherent excitation of quasinormal modes of different angular
orders, a superposition which naturally "precesses" and modulates the
line-of-sight amplitude. Recent analytic calculations have arrived at a similar
geometric interpretation. We suspect the line-of-sight polarization content
will be a convenient observable with which to define new high-precision tests
of general relativity using gravitational waves. Additionally, as the nonlinear
merger process seeds the initial coherent perturbation, we speculate the
amplitude of this effect provides a new probe of the strong-field dynamics
during merger. To demonstrate the ubiquity of the effects we describe, we
summarize the post-merger evolution of 104 generic precessing binary mergers.
Finally, we provide estimates for the detectable impacts of precession on the
waveforms from high-mass sources. These expressions may identify new precessing
binary parameters whose waveforms are dissimilar from the existing sample.Comment: 11 figures; v2 includes response to referee suggestion
Gravity survey of the Mt. Toondina impact structure, South Australia
The Mt. Toondina impact structure is located in northern South Australia, about 45 km south of the town of Oodnadatta. Only the central uplift is exposed. The outcrops at Mt. Toondina reveal a remarkable structural anomaly surrounded by a broad expanse of nearly flat-lying beds of the Bulldog Shale of Early Cretaceous age. A gravity survey was undertaken in 1989 to determine the diameter of the impact structure, define the form of the central uplift, and understand the local crustal structure. Data were collected along two orthogonal lines across the structure. In addition to the profiles, a significant number of measurements were made on and around the central uplift. The 1989 gravity data combined with 1963 gravity data and the seismic reflection data provide an excellent data base to interpret the subsurface structure of the Mt. Toondina feature
Chemical fractionation of siderophile elements in impactites from Australian meteorite craters
The abundance pattern of siderophile elements in terrestrial and lunar impact melt rocks was used extensively to infer the nature of the impacting projectiles. An implicit assumption made is that the siderophile abundance ratios of the projectiles are approximately preserved during mixing of the projectile constituents with the impact melts. As this mixture occurs during flow of strongly shocked materials at high temperatures, however there are grounds for suspecting that the underlying assumption is not always valid. In particular, fractionation of the melted and partly vaporized material of the projectile might be expected because of differences in volatility, solubility in silicate melts, and other characteristics of the constituent elements. Impactites from craters with associated meteorites offer special opportunities to test the assumptions on which projectile identifications are based and to study chemical fractionation that occurred during the impact process
Spray Ejected from the Lunar Surface by Meteoroid Impact
Fragments ejected from lunar surface by meteoroid impact analyzed on basis of studies of hypervelocity impact in rock and san
Effects of electrical charging on the mechanical Q of a fused silica disk
We report on the effects of an electrical charge on mechanical loss of a
fused silica disk. A degradation of Q was seen that correlated with charge on
the surface of the sample. We examine a number of models for charge damping,
including eddy current damping and loss due to polarization. We conclude that
rubbing friction between the sample and a piece of dust attracted by the
charged sample is the most likely explanation for the observed loss.Comment: submitted to Review of Scientific Instrument
Robustness of Binary Black Hole Mergers in the Presence of Spurious Radiation
We present an investigation into how sensitive the last orbits and merger of
binary black hole systems are to the presence of spurious radiation in the
initial data. Our numerical experiments consist of a binary black hole system
starting the last couple of orbits before merger with additional spurious
radiation centered at the origin and fixed initial angular momentum. As the
energy in the added spurious radiation increases, the binary is invariably
hardened for the cases we tested, i.e. the merger of the two black holes is
hastened. The change in merger time becomes significant when the additional
energy provided by the spurious radiation increases the Arnowitt-Deser-Misner
(ADM) mass of the spacetime by about 1%. While the final masses of the black
holes increase due to partial absorption of the radiation, the final spins
remain constant to within our numerical accuracy. We conjecture that the
spurious radiation is primarily increasing the eccentricity of the orbit and
secondarily increasing the mass of the black holes while propagating out to
infinity.Comment: 12 pages, 12 figure
Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix
Exchange biased composites of ferromagnetic single-domain Ni nanoparticles
embedded within large grains of MnO have been prepared by reduction of
NiMnO phases in flowing hydrogen. The Ni precipitates are 15-30
nm in extent, and the majority are completely encased within the MnO matrix.
The manner in which the Ni nanoparticles are spontaneously formed imparts a
high ferromagnetic- antiferromagnetic interface/volume ratio, which results in
substantial exchange bias effects. Exchange bias fields of up to 100 Oe are
observed, in cases where the starting Ni content in the precursor
NiMnO phase is small. For particles of approximately the same
size, the exchange bias leads to significant hardening of the magnetization,
with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure
Optical dispersion relations for diamondlike carbon films
Ellipsometric measurements on plasma deposited diamondlike amorphous carbon (a-C:H) films were taken in the visible, (E = 1.75 to 3.5 eV). The films were deposited on Si and their properties were varied using high temperature (up to 750 C) anneals. The real (n) and imaginary (k) parts of the complex index of refraction, N, were obtained simultaneously. Following the theory of Forouhi and Bloomer, a least squares fit was used to find the dispersion relations n(E) and k(E). Reasonably good fits were obtained, showing that the theory can be used for a-C:H films. Moreover, the value of the energy gap, Eg, obtained in this way was compared the the Eg value using conventional Tauc plots and reasonably good agreement was obtained
Intrinsic selection biases of ground-based gravitational wave searches for high-mass BH-BH mergers
The next generation of ground-based gravitational wave detectors may detect a
few mergers of comparable-mass M\simeq 100-1000 Msun ("intermediate-mass'', or
IMBH) spinning black holes. Black hole spin is known to have a significant
impact on the orbit, merger signal, and post-merger ringdown of any binary with
non-negligible spin. In particular, the detection volume for spinning binaries
depends significantly on the component black hole spins. We provide a fit to
the single-detector and isotropic-network detection volume versus (total) mass
and arbitrary spin for equal-mass binaries. Our analysis assumes matched
filtering to all significant available waveform power (up to l=6 available for
fitting, but only l<= 4 significant) estimated by an array of 64 numerical
simulations with component spins as large as S_{1,2}/M^2 <= 0.8. We provide a
spin-dependent estimate of our uncertainty, up to S_{1,2}/M^2 <= 1. For the
initial (advanced) LIGO detector, our fits are reliable for
(). In the online version of this
article, we also provide fits assuming incomplete information, such as the
neglect of higher-order harmonics. We briefly discuss how a strong selection
bias towards aligned spins influences the interpretation of future
gravitational wave detections of IMBH-IMBH mergers.Comment: 18 pages, 15 figures, accepted by PRD. v2 is version accepted for
publication, including minor changes in response to referee feedback and
updated citation
- …
