64 research outputs found

    The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology

    Get PDF
    The Uitkomst intrusion is a tubular mafic-ultramafic layered body that hosts one of South Africa’s largest Ni-Cu-Cr-PGE deposits, Nkomati. The sulphide ore occurs in the form of massive lenses in the immediate quartzitic footwall and as disseminations within peridotite. The chromite ore forms an up to ∼10-m-thick layer in the lower portion of the intrusion. Uitkomst has generally been interpreted as a magma conduit, possibly related to the Bushveld event. Here, we present a new high-precision U-Pb zircon date of 2057.64 ± 0.69 Ma that overlaps with the age of the Merensky Reef of the Bushveld Complex and thus demonstrates a coeval relationship between the intrusions. Based on incompatible trace elements as well as O- and Nd isotope data (εNd −4.5 to −6.2), we show that the Uitkomst parent magmas were contaminated with up to 20% Archean upper crust prior to emplacement, and with up to 15% dolomitic country rock during emplacement. Ore formation at Nkomati was critically aided by substantial devolatisation and removal of dolomitic floor rocks leading to hydrodynamic concentration of sulphide and chromite during slumping of crystal mushes into the trough-like centre of the subsiding intrusion and its footwall

    The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology

    Get PDF
    The Uitkomst intrusion is a tubular mafic-ultramafic layered body that hosts one of South Africa’s largest Ni-Cu-Cr-PGE deposits, Nkomati. The sulphide ore occurs in the form of massive lenses in the immediate quartzitic footwall and as disseminations within peridotite. The chromite ore forms an up to ∼10-m-thick layer in the lower portion of the intrusion. Uitkomst has generally been interpreted as a magma conduit, possibly related to the Bushveld event. Here, we present a new high-precision U-Pb zircon date of 2057.64 ± 0.69 Ma that overlaps with the age of the Merensky Reef of the Bushveld Complex and thus demonstrates a coeval relationship between the intrusions. Based on incompatible trace elements as well as O- and Nd isotope data (εNd −4.5 to −6.2), we show that the Uitkomst parent magmas were contaminated with up to 20% Archean upper crust prior to emplacement, and with up to 15% dolomitic country rock during emplacement. Ore formation at Nkomati was critically aided by substantial devolatisation and removal of dolomitic floor rocks leading to hydrodynamic concentration of sulphide and chromite during slumping of crystal mushes into the trough-like centre of the subsiding intrusion and its footwall

    Leaching systematics and matrix elimination for the determination of high-precision Pb isotope compositions of ocean island basalts

    No full text
    Ocean island basalts from Hawaii and Kerguelen were analyzed for their Pb isotopic compositions to assess the effect of acid leaching and matrix elimination by Pb anion exchange columns on reproducibility and accuracy. Unleached samples consistently yield Pb isotopic ratios that reflect the incorporation of foreign material. Leaching removes up to 70-80% of the total Pb content of the samples with corresponding weight losses between 35 and 60%. The older and more altered Kerguelen basalts show better external reproducibility than the Hawaiian basalts, which appears to be due to the presence in the Hawaiian samples of more radiogenic contaminants (e.g., seawater Pb, drilling mud, and related alteration phases). All leached samples purified twice on anion exchange columns show more radiogenic Pb isotopic ratios than those processed once. The difference is larger for tholeiitic basalts (Hawaiian and Kerguelen Plateau) than for transitional to alkalic basalts (Kerguelen Archipelago). The small differences in measured ratios of total procedural triplicates reflect differential elimination of residual alteration via leaching and matrix effects. The effectiveness of matrix elimination depends on the specific basalt composition, and tholeiitic basalts (i.e., low Pb concentrations) require two passes on anion exchange columns. This study shows that all steps in sample processing are critical for achieving accurate high-precision Pb isotopic compositions of ocean island basalts. © 2009 by the American Geophysical Union

    Chem. Geol.

    No full text
    • …
    corecore