234 research outputs found

    Universality classes in nonequilibrium lattice systems

    Full text link
    This work is designed to overview our present knowledge about universality classes occurring in nonequilibrium systems defined on regular lattices. In the first section I summarize the most important critical exponents, relations and the field theoretical formalism used in the text. In the second section I briefly address the question of scaling behavior at first order phase transitions. In section three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and the percolation behavior. The main body of this work is given in section four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In section five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of the known nonequilibrium transition classes are explored in low dimensions between active and absorbing states of reaction-diffusion type of systems. However by mapping they can be related to universal behavior of interface growth models, which I overview in section six. Finally in section seven I summarize families of absorbing state system classes, mean-field classes and give an outlook for further directions of research.Comment: Updated comprehensive review, 62 pages (two column), 29 figs included. Scheduled for publication in Reviews of Modern Physics in April 200

    Stochastic processes with finite correlation time: modeling and application to the generalized Langevin equation

    Full text link
    The kangaroo process (KP) is characterized by various forms of the covariance and can serve as a useful model of random noises. We discuss properties of that process for the exponential, stretched exponential and algebraic (power-law) covariances. Then we apply the KP as a model of noise in the generalized Langevin equation and simulate solutions by a Monte Carlo method. Some results appear to be incompatible with requirements of the fluctuation-dissipation theorem because probability distributions change when the process is inserted into the equation. We demonstrate how one can construct a model of noise free of that difficulty. This form of the KP is especially suitable for physical applications.Comment: 22 pages (RevTeX) and 4 figure

    Integrative Analysis of the Mitochondrial Proteome in Yeast

    Get PDF
    In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Mining for genotype-phenotype relations in Saccharomyces using partial least squares

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multivariate approaches are important due to their versatility and applications in many fields as it provides decisive advantages over univariate analysis in many ways. Genome wide association studies are rapidly emerging, but approaches in hand pay less attention to multivariate relation between genotype and phenotype. We introduce a methodology based on a BLAST approach for extracting information from genomic sequences and Soft- Thresholding Partial Least Squares (ST-PLS) for mapping genotype-phenotype relations.</p> <p>Results</p> <p>Applying this methodology to an extensive data set for the model yeast <it>Saccharomyces cerevisiae</it>, we found that the relationship between genotype-phenotype involves surprisingly few genes in the sense that an overwhelmingly large fraction of the phenotypic variation can be explained by variation in less than 1% of the full gene reference set containing 5791 genes. These phenotype influencing genes were evolving 20% faster than non-influential genes and were unevenly distributed over cellular functions, with strong enrichments in functions such as cellular respiration and transposition. These genes were also enriched with known paralogs, stop codon variations and copy number variations, suggesting that such molecular adjustments have had a disproportionate influence on <it>Saccharomyces </it>yeasts recent adaptation to environmental changes in its ecological niche.</p> <p>Conclusions</p> <p>BLAST and PLS based multivariate approach derived results that adhere to the known yeast phylogeny and gene ontology and thus verify that the methodology extracts a set of fast evolving genes that capture the phylogeny of the yeast strains. The approach is worth pursuing, and future investigations should be made to improve the computations of genotype signals as well as variable selection procedure within the PLS framework.</p

    The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing

    Get PDF
    In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS). By the use of rapid amplification of cDNA ends (5′-RACE) we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms

    Genomewide Analyses Define Different Modes of Transcriptional Regulation by Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ)

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with essential functions in lipid, glucose and energy homeostasis, cell differentiation, inflammation and metabolic disorders, and represent important drug targets. PPARs heterodimerize with retinoid X receptors (RXRs) and can form transcriptional activator or repressor complexes at specific DNA elements (PPREs). It is believed that the decision between repression and activation is generally governed by a ligand-mediated switch. We have performed genomewide analyses of agonist-treated and PPARβ/δ-depleted human myofibroblasts to test this hypothesis and to identify global principles of PPARβ/δ-mediated gene regulation. Chromatin immunoprecipitation sequencing (ChIP-Seq) of PPARβ/δ, H3K4me3 and RNA polymerase II enrichment sites combined with transcriptional profiling enabled the definition of 112 bona fide PPARβ/δ target genes showing either of three distinct types of transcriptional response: (I) ligand-independent repression by PPARβ/δ; (II) ligand-induced activation and/or derepression by PPARβ/δ; and (III) ligand-independent activation by PPARβ/δ. These data identify PPRE-mediated repression as a major mechanism of transcriptional regulation by PPARβ/δ, but, unexpectedly, also show that only a subset of repressed genes are activated by a ligand-mediated switch. Our results also suggest that the type of transcriptional response by a given target gene is connected to the structure of its associated PPRE(s) and the biological function of its encoded protein. These observations have important implications for understanding the regulatory PPAR network and PPARβ/δ ligand-based drugs

    Deep Sequencing the Transcriptome Reveals Seasonal Adaptive Mechanisms in a Hibernating Mammal

    Get PDF
    Mammalian hibernation is a complex phenotype involving metabolic rate reduction, bradycardia, profound hypothermia, and a reliance on stored fat that allows the animal to survive for months without food in a state of suspended animation. To determine the genes responsible for this phenotype in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) we used the Roche 454 platform to sequence mRNA isolated at six points throughout the year from three key tissues: heart, skeletal muscle, and white adipose tissue (WAT). Deep sequencing generated approximately 3.7 million cDNA reads from 18 samples (6 time points ×3 tissues) with a mean read length of 335 bases. Of these, 3,125,337 reads were assembled into 140,703 contigs. Approximately 90% of all sequences were matched to proteins in the human UniProt database. The total number of distinct human proteins matched by ground squirrel transcripts was 13,637 for heart, 12,496 for skeletal muscle, and 14,351 for WAT. Extensive mitochondrial RNA sequences enabled a novel approach of using the transcriptome to construct the complete mitochondrial genome for I. tridecemlineatus. Seasonal and activity-specific changes in mRNA levels that met our stringent false discovery rate cutoff (1.0×10−11) were used to identify patterns of gene expression involving various aspects of the hibernation phenotype. Among these patterns are differentially expressed genes encoding heart proteins AT1A1, NAC1 and RYR2 controlling ion transport required for contraction and relaxation at low body temperatures. Abundant RNAs in skeletal muscle coding ubiquitin pathway proteins ASB2, UBC and DDB1 peak in October, suggesting an increase in muscle proteolysis. Finally, genes in WAT that encode proteins involved in lipogenesis (ACOD, FABP4) are highly expressed in August, but gradually decline in expression during the seasonal transition to lipolysis
    corecore