265 research outputs found

    The circular life of human CD38: From basic science to clinics and back

    Get PDF
    Monoclonal antibodies (mAbs) were initially considered as a possible “magic bullet” for in vivo elimination of tumor cells. mAbs represented the first step: however, as they were murine in nature (the earliest experience on the field), they were considered unfit for human applications. This prompted the development of techniques for cloning the variable regions of conventional murine antibodies, genetically mounted on human IgG. The last step in this years-long process was the design for the preparation of fully human reagents. The choice of the target molecule was also problematic, since cancer-specific targets are quite limited in number. To overcome this obstacle in the planning phases of antibody-mediated therapy, attention was focused on a set of normal molecules, whose quantitative distribution may balance a tissue-dependent generalized expression. The results and clinical success obtained with anti-CD20 mAbs revived interest in this type of strategy. Using multiple myeloma (MM) as a tumor model was challenging first of all because the plasma cells and their neoplastic counterpart eluded the efforts of the Workshop on Differentiation Antigens to find a target molecule exclusively expressed by these cells. For this reason, attention was turned to surface molecules which fulfill the requisites of being reasonably good targets, even if not specifically restricted to tumor cells. In 2009, we proposed CD38 as a MM target in virtue of its expression: it is absent on early hematological progenitors, has variable but generalized limited expression by normal cells, but is extremely high in plasma cells and in myeloma. Further, regulation of its expression appeared to be dependent on a variety of factors, including exposure to all-trans retinoic acid (ATRA), a potent and highly specific inducer of CD38 expression in human promyelocytic leukemia cells that are now approved for in vivo use. This review discusses the history of human CD38, from its initial characterization to its targeting in antibody-mediated therapy of human myeloma

    NAD+-metabolizing ecto-enzymes shape tumor–host interactions: The chronic lymphocytic leukemia model

    Get PDF
    AbstractNicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme that can be released in the extracellular milieu. Here, it may elicit signals through binding purinergic receptors. Alternatively, NAD+ may be dismantled to adenosine, up-taken by cells and transformed to reconstitute the intracellular nucleotide pool. An articulated ecto-enzyme network is responsible for the nucleotide–nucleoside conversion. CD38 is the main mammalian enzyme that hydrolyzes NAD+, generating Ca2+-active metabolites. Evidence suggests that this extracellular network may be altered or used by tumor cells to (i) nestle in protected areas, and (ii) evade the immune response. We have exploited chronic lymphocytic leukemia as a model to test the role of the ecto-enzyme network, starting by analyzing the individual elements that make up the whole picture

    CD38 and anti-CD38 monoclonal antibodies in AL amyloidosis: Targeting plasma cells and beyond

    Get PDF
    Immunoglobulin light chain amyloidosis (AL amyloidosis) is a rare systemic disease characterized by monoclonal light chains (LCs) depositing in tissue as insoluble fibrils, causing irreversible tissue damage. The mechanisms involved in aggregation and deposition of LCs are not fully understood, but CD138/38 plasma cells (PCs) are undoubtedly involved in monoclonal LC production.CD38 is a pleiotropic molecule detectable on the surface of PCs and maintained during the neoplastic transformation in multiple myeloma (MM). CD38 is expressed on T, B and NK cell populations as well, though at a lower cell surface density. CD38 is an ideal target in the management of PC dyscrasia, including AL amyloidosis, and indeed anti-CD38 monoclonal antibodies (MoAbs) have promising therapeutic potential. Anti-CD38 MoAbs act both as PC-depleting agents and as modulators of the balance of the immune cells. These aspects, together with their interaction with Fc receptors (FcRs) and neonatal FcRs, are specifically addressed in this paper. Moreover, the initiallyavailable experiences with the anti-CD38 MoAb DARA in AL amyloidosis are reviewed

    The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism

    Get PDF
    Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway

    So close so different: what makes the difference?

    Get PDF
    The introduction of alien fish species in wetland ecosystems could have a great impact on freshwater communities and ecological processes. Despite fish introduction has been noticed as one of the principal cause of freshwater extinctions, ecosystem processes alteration, and change in aquatic community assemblage, very few data about impact on freshwater reptiles are available. As study model we used two neighbour sub-populations of the endangered Sicilian pond turtle, Emys trinacris, inhabiting two small, close each other and very similar lakes, except for the presence of allocthonous fish, Cyprinus carpio and Gambusia hoolbroki in one of the two. The multi-year study allowed highlighting significant differences in abundance, growth and reproductive output between the two freshwater turtle sub-populations, suggesting their influence on phenotypic plasticity of the studied population. These results are discussed in the light of previous evidence about the impact of these alien species on abundance and assemblage of the invertebrate community with an evident impact on niche width, diet composition and therefore energy intake by Emys trinacris. These data may provide important information to address management strategies and conservation actions of small wetland areas inhabited by pond turtles, pointing out a threats never highlighted up to now

    DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites

    Get PDF
    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development

    CD38 and bone marrow microenvironment.

    Get PDF
    This review summarizes the events ruled by CD38 shaping the bone marrow environment, recapitulating old and new aspects derived from the body of knowledge on the molecule. The disease models considered were myeloma and chronic lymphocytic leukemia (CLL). CD38 has been analyzed considering its twin function as receptor and enzyme, roles usually not considered in clinics, where it is used as a routine marker. Another aspect pertaining basic science concerns the role of the molecule as a member of an ectoenzyme network, potentially metabolizing soluble factors not yet analyzed (e.g., NAD+, ATP, NAM) or influencing hormone secretion (e.g., oxytocin). The last point is focused on the use of CD38 as a target of an antibody-mediated therapeutic approach in myeloma and CLL. A recent observation is that CD38 may run an escape circuit leading to the production of adenosine. The generation of local anergy may be blocked by using anti-CD38 antibodies. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes
    corecore