4,894 research outputs found

    Dynamic optimal taxation with human capital.

    Get PDF
    This paper revisits the dynamic optimal taxation results of Jones, Manuelli, and Rossi (1993, 1997). They use a growth model with human capital and find that optimal taxes on both capital income and labor income converge to zero in steady state. For one of the models under consideration, I show that the representative household's problem does not have an interior solution. This raises concerns since these corners are inconsistent with aggregate data. Interiority is restored if preferences are modified so that human capital augments the value of leisure time. With this change, the optimal tax problem is analyzed and, reassuringly, the Jones, Manuelli, and Rossi results are confirmed: neither capital income nor labor income should be taxed in steady state

    Deep learning with convolutional neural networks for decoding and visualization of EEG pathology

    Get PDF
    We apply convolutional neural networks (ConvNets) to the task of distinguishing pathological from normal EEG recordings in the Temple University Hospital EEG Abnormal Corpus. We use two basic, shallow and deep ConvNet architectures recently shown to decode task-related information from EEG at least as well as established algorithms designed for this purpose. In decoding EEG pathology, both ConvNets reached substantially better accuracies (about 6% better, ~85% vs. ~79%) than the only published result for this dataset, and were still better when using only 1 minute of each recording for training and only six seconds of each recording for testing. We used automated methods to optimize architectural hyperparameters and found intriguingly different ConvNet architectures, e.g., with max pooling as the only nonlinearity. Visualizations of the ConvNet decoding behavior showed that they used spectral power changes in the delta (0-4 Hz) and theta (4-8 Hz) frequency range, possibly alongside other features, consistent with expectations derived from spectral analysis of the EEG data and from the textual medical reports. Analysis of the textual medical reports also highlighted the potential for accuracy increases by integrating contextual information, such as the age of subjects. In summary, the ConvNets and visualization techniques used in this study constitute a next step towards clinically useful automated EEG diagnosis and establish a new baseline for future work on this topic.Comment: Published at IEEE SPMB 2017 https://www.ieeespmb.org/2017

    Quasi-normal modes for doubly rotating black holes

    Get PDF
    Based on the work of Chen, L\"u and Pope, we derive expressions for the D6D\geq 6 dimensional metric for Kerr-(A)dS black holes with two independent rotation parameters and all others set equal to zero: a10,a20,a3=a4=...=0a_1\neq 0, a_2\neq0, a_3=a_4=...=0. The Klein-Gordon equation is then explicitly separated on this background. For D6D\geq 6 this separation results in a radial equation coupled to two generalized spheroidal angular equations. We then develop a full numerical approach that utilizes the Asymptotic Iteration Method (AIM) to find radial Quasi-Normal Modes (QNMs) of doubly rotating flat Myers-Perry black holes for slow rotations. We also develop perturbative expansions for the angular quantum numbers in powers of the rotation parameters up to second order.Comment: RevTeX 4-1, various figure

    The discovery of a low mass, pre-main-sequence stellar association around gamma Velorum

    Full text link
    We report the serendipitous discovery of a population of low mass, pre-main sequence stars (PMS) in the direction of the Wolf-Rayet/O-star binary system gamma^{2} Vel and the Vela OB2 association. We argue that gamma^{2} Vel and the low mass stars are truly associated, are approximately coeval and that both are at distances between 360-490 pc, disagreeing at the 2 sigma level with the recent Hipparcos parallax of gamma^{2} Vel, but consistent with older distance estimates. Our results clearly have implications for the physical parameters of the gamma^{2} Vel system, but also offer an exciting opportunity to investigate the influence of high mass stars on the mass function and circumstellar disc lifetimes of their lower mass PMS siblings.Comment: Monthly Notices of the Royal Astronomical Society, Letters - in pres

    Pre-main-sequence isochrones -- II. Revising star and planet formation timescales

    Full text link
    We have derived ages for 13 young (<30 Myr) star-forming regions and find they are up to a factor two older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (~10-12 Myr) and that the average Class I lifetime is greater (~1 Myr) than currently believed. For each star-forming region we derived two ages from colour-magnitude diagrams. First we fitted models of the evolution between the zero-age main-sequence and terminal-age main-sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr) we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ~2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8), and NGC 2244 (Rosette Nebula); ~6 Myr for {\sigma} Ori, Cep OB3b, and IC 348; ~10 Myr for {\lambda} Ori (Collinder 69); ~11 Myr for NGC 2169; ~12 Myr for NGC 2362; ~13 Myr for NGC 7160; ~14 Myr for {\chi} Per (NGC 884); and ~20 Myr for NGC 1960 (M 36).Comment: 28 pages, 18 figures, 34 tables, accepted for publication in MNRAS. All photometric catalogues presented in this paper are available online at the Cluster Collaboration homepage http://www.astro.ex.ac.uk/people/timn/Catalogues

    A lithium depletion boundary age of 22 Myr for NGC 1960

    Full text link
    We present a deep Cousins RI photometric survey of the open cluster NGC 1960, complete to R_C \simeq 22, I_C \simeq 21, that is used to select a sample of very low-mass cluster candidates. Gemini spectroscopy of a subset of these is used to confirm membership and locate the age-dependent "lithium depletion boundary" (LDB) --the luminosity at which lithium remains unburned in its low-mass stars. The LDB implies a cluster age of 22 +/-4 Myr and is quite insensitive to choice of evolutionary model. NGC 1960 is the youngest cluster for which a LDB age has been estimated and possesses a well populated upper main sequence and a rich low-mass pre-main sequence. The LDB age determined here agrees well with precise age estimates made for the same cluster based on isochrone fits to its high- and low-mass populations. The concordance between these three age estimation techniques, that rely on different facets of stellar astrophysics at very different masses, is an important step towards calibrating the absolute ages of young open clusters and lends confidence to ages determined using any one of them.Comment: Accepted for publication in MNRA

    The ``Outside-In'' Outburst of HT Cassiopeiae

    Get PDF
    We present results from photometric observations of the dwarf nova system HT Cas during the eruption of November 1995. The data include the first two--colour observations of an eclipse on the rise to outburst. They show that during the rise to outburst the disc deviates significantly from steady state models, but the inclusion of an inner-disc truncation radius of about 4 RwdR_{wd} and a ``flared'' disc of semi-opening angle of 1010^{\circ} produces acceptable fits. The disc is found to have expanded at the start of the outburst to about 0.41RL10.41R_{L1}, as compared to quiescent measurements. The accretion disc then gradually decreases in radius reaching <0.32RL1<0.32R_{L1} during the last stages of the eruption. Quiescent eclipses were also observed prior to and after the eruption and a revised ephemeris is calculated.Comment: 9 pages, 11 figures, to appear in MNRA

    Photon echo quantum memories in inhomogeneously broadened two level atoms

    Get PDF
    Here we propose a solid-state quantum memory that does not require spectral holeburning, instead using strong rephasing pulses like traditional photon echo techniques. The memory uses external broadening fields to reduce the optical depth and so switch off the collective atom-light interaction when desired. The proposed memory should allow operation with reasonable efficiency in a much broader range of material systems, for instance Er3+ doped crystals which have a transition at 1.5 um. We present analytic theory supported by numerical calculations and initial experiments.Comment: 7 pages, 8 figure

    Three Additional Quiescent Low-Mass X-ray Binary Candidates in 47 Tucanae

    Full text link
    We identify through their X-ray spectra one certain (W37) and two probable (W17 and X4) quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars in a long Chandra X-ray exposure of the globular cluster 47 Tucanae, in addition to the two previously known qLMXBs. W37's spectrum is dominated by a blackbody-like component consistent with radiation from the hydrogen atmosphere of a 10 km neutron star. W37's lightcurve shows strong X-ray variability which we attribute to variations in its absorbing column depth, and eclipses with a probable 3.087 hour period. For most of our exposures, W37's blackbody-like emission (assumed to be from the neutron star surface) is almost completely obscured, yet some soft X-rays (of uncertain origin) remain. Two additional candidates, W17 and X4, present X-ray spectra dominated by a harder component, fit by a power-law of photon index ~1.6-3. An additional soft component is required for both W17 and X4, which can be fit with a 10 km hydrogen-atmosphere neutron star model. X4 shows significant variability, which may arise from either its power-law or hydrogen-atmosphere spectral component. Both W17 and X4 show rather low X-ray luminosities, Lx(0.5-10 keV)~5*10^{31} ergs/s. All three candidate qLMXBs would be difficult to identify in other globular clusters, suggesting an additional reservoir of fainter qLMXBs in globular clusters that may be of similar numbers as the group of previously identified objects. The number of millisecond pulsars inferred to exist in 47 Tuc is less than 10 times larger than the number of qLMXBs in 47 Tuc, indicating that for typical inferred lifetimes of 10 and 1 Gyr respectively, their birthrates are comparable.Comment: Accepted for publication in ApJ. 13 pages, 7 figures (2 color
    corecore