1,839 research outputs found

    Extended x-ray absorption fine structure study of porous GaSb formed by ion implantation

    Get PDF
    Porous GaSb has been formed by Ga ion implantation into crystalline GaSb substrates at either room temperature or −180 °C. The morphology has been characterized using scanning electron microscopy and the atomic structure was determined using extended x-ray absorption fine structure spectroscopy. Room-temperature implantation at low fluences leads to the formation of ∼20-nm voids though the material remains crystalline. Higher fluences cause the microstructure to evolve into a network of amorphous GaSb rods ∼15 nm in diameter. In contrast, implantation at −180 °C generates large, elongated voids but no rods. Upon exposure to air, the surface of the porous material is readily oxidized yielding Ga₂O₃ and metallic Sb precipitates, the latter resulting from the reduction of unstable Sb₂O₃. We consider and discuss the atomic-scale mechanisms potentially operative during the concurrent crystalline-to-amorphous and continuous-to-porous transformations

    The relation between sea ice thickness and freeboard in the Arctic

    Get PDF
    Retrieval of Arctic sea ice thickness from CryoSat-2 radar altimeter freeboard data requires observational data to verify the relation between these two variables. In this study in-situ ice and snow data from 689 observation sites, obtained during the Sever expeditions in the 1980s, have been used to establish an empirical relation between thickness and freeboard of FY ice in late winter. Estimates of mean and variability of snow depth, snow density and ice density were produced on the basis of many field observations. These estimates have been used in the hydrostatic equilibrium equation to retrieve ice thickness as a function of ice freeboard, snow depth and snow/ice density. The accuracy of the ice thickness retrieval has been calculated from the estimated variability in ice and snow parameters and error of ice freeboard measurements. It is found that uncertainties of ice density and freeboard are the major sources of error in ice thickness calculation. For FY ice, retrieval of ≈ 1.0 m (2.0 m) thickness has an uncertainty of 46% (37%), and for MY ice, retrieval of 2.4 m (3.0 m) thickness has an uncertainty of 20% (18%), assuming that the freeboard error is ± 0.03 m for both ice types. For MY ice the main uncertainty is ice density error, since the freeboard error is relatively smaller than that for FY ice. If the freeboard error can be reduced to 0.01 m by averaging measurements from CryoSat-2, the error in thickness retrieval is reduced to about 32% for a 1.0 m thick FY floe and to about 18% for a 2.4 m thick MY floe. The remaining error is dominated by uncertainty in ice density. Provision of improved ice density data is therefore important for accurate retrieval of ice thickness from CryoSat-2 data

    Direct observation of substitutional Ga after ion implantation in Ge by means of extended x-ray absorption fine structure

    Get PDF
    We present an experimental lattice location study of Ga atoms in Ge after ion implantation at elevated temperature (250°C). Using extended x-rayabsorption fine structure (EXAFS) experiments and a dedicated sample preparation method, we have studied the lattice location of Ga atoms in Ge with a concentration ranging from 0.5 at. % down to 0.005 at. %. At Ga concentrations ≤0.05 at.%, all Ga dopants are substitutional directly after ion implantation, without the need for post-implantation thermal annealing. At higher Ga concentrations, a reduction in the EXAFS amplitude is observed, indicating that a fraction of the Ga atoms is located in a defective environment. The local strain induced by the Ga atoms in the Ge matrix is independent of the Ga concentration and extends only to the first nearest neighbor Ge shell, where a 1% contraction in bond length has been measured, in agreement with density functional theory calculations.We acknowledge the support from the Research Foundation Flanders, the epi-team from imec, the KU Leuven GOA 09/06 project, the IUAP program P6/42 and the Australian Research Council. S.C. acknowledges support from OCAS NV by an OCAS-endowed chair at Ghent University

    Drug resistance is widespread among children who receive long-term antiretroviral treatment at a rural Tanzanian hospital

    Get PDF
    To assess long-term virological efficacy and the emergence of drug resistance in children who receive antiretroviral treatment (ART) in rural Tanzania. Haydom Lutheran Hospital has provided ART to HIV-infected individuals since 2003. From February through May 2009, a cross-sectional virological efficacy survey was conducted among children (200 copies/mL. Virological response was measured in 19 of 23 eligible children; 8 of 19 were girls and median age at ART initiation was 5 years (range 2–14 years). Median duration of ART at the time of the survey was 40 months (range 11–61 months). Only 8 children were virologically suppressed (≤40 copies/mL), whereas 11 children had clinically relevant resistance mutations in the reverse transcriptase gene. The most frequent mutations were M184V (n = 11), conferring resistance to lamivudine and emtricitabine, and Y181C (n = 4), G190A/S (n = 4) and K103N (n = 4), conferring resistance to NNRTIs. Of concern, three children had thymidine analogue mutations, associated with cross-resistance to all nucleoside reverse transcriptase inhibitors. Despite widespread resistance, however, only one child experienced a new WHO stage 4 event and none had a CD4 cell count of <200 cells/mm3. Among children on long-term ART in rural Tanzania, >50% harboured drug resistance. Results for children were markedly poorer than for adults attending the same programme, underscoring the need for improved treatment strategies for children in resource-limited settings

    Co–Au core-shell nanocrystals formed by sequential ion implantation into SiO₂

    No full text
    Co–Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO₂. The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au–Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions.P.K. and M.C.R. thank the Australian Research Council for support. P.K., B.H., B.J., and M.C.R. were supported by the Australian Synchrotron Research Program, funded by the Commonwealth of Australia via the Major National Research Facilities Program

    Overview of the Nordic Seas CARINA data and salinity measurements

    Get PDF
    Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005

    The influence of annealing conditions on the growth and structure of embedded Pt nanocrystals

    No full text
    The growth and structure of Pt nanocrystals (NCs) formed by ion implantation in a-SiO₂ has been investigated as a function of the annealing conditions. Transmission electron microscopy and small-angle x-ray scatteringmeasurements demonstrate that the annealing ambient has a significant influence on NC size. Samples annealed in either Ar, O₂, or forming gas (95% N₂: 5% H₂) at temperatures ranging from 500 °C–1300 °C form spherical NCs with mean diameters ranging from 1–14 nm. For a given temperature, annealing in Ar yields the smallest NCs. O₂ and forming gas ambients produce NCs of comparable size though the latter induces H chemisorption at 1100 °C and above, as verified with x-ray absorption spectroscopy. This H intake is accompanied by a bond-length expansion and increased structural disorder in NCs of diameter >3 nm.We thank the Australian Synchrotron Research Program and the Australian Research Council for financial support

    Reversed Electron Transfer in Dual Single Atom Catalyst for Boosted Photoreduction of CO2

    Get PDF
    Photogenerated charge localization on material surfaces significantly affects photocatalytic performance, especially for multi-electron CO2 reduction. Dual single atom (DSA) catalysts with flexibly designed reactive sites have received significant research attention for CO2 photoreduction. However, the charge transfer mechanism in DSA catalysts remains poorly understood. Here we report for the first time a reversed electron transfer mechanism on Au and Co DSA catalysts. In situ characterizations confirm that for CdS nanoparticles (NPs) loaded with Co or Au single atoms, photogenerated eletrons are localized around the single atom of Co or Au. In DSA catalysts however electrons are delocalized from Au and accumulate around Co atoms. Importantly, combined advanced spectroscopic findings and theoretical computation evidence that this reversed electron transfer in Au/Co DSA boosts charge redistribution and activation of CO2 molecules, leading to highly significantly increased photocatalytic CO2 reduction, for example, Au/Co DSA loaded CdS exhibits, respectively, ca. 2800% and 700% greater yields for CO and CH4 compared with that for CdS alone. Reversed electron transfer in DSA can be used for practical design for charge redistribution and to boost photoreduction of CO2 . Findings will be of benefit to researchers and manufacturers in DSA loaded catalysts for generation of solar fuels.Yanzhao Zhang, Bernt Johannessen, Peng Zhang, Jinlong Gong, Jingrun Ran, and Shi-Zhang Qia
    corecore