91,824 research outputs found

    Orbital Variability in the Eclipsing Pulsar Binary PSR B1957+20

    Full text link
    We have conducted timing observations of the eclipsing millisecond binary pulsar PSR~B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly ΔPb/Pb=1.6×107\Delta P_b/P_b = 1.6 \times 10^{-7}, changing quadratically with time and displaying an orbital period second derivative P¨b=(1.43±0.08)×1018\ddot P_b = (1.43 \pm 0.08) \times 10^{-18}\,s1^{-1}. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive and increasing rapidly. If, as we suspect, the PSR~B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025M0.025\,M{_\odot} companion to PSR~B1957+20 is most likely non-degenerate, convective, and magnetically active.Comment: 9 pages, 3 figures, LaTeX, submitted ApJL 13 Dec. 1993, arz-00

    Selection of neutralizing antibody escape mutants with type A influenza virus HA-specific polyclonal antisera: possible significance for antigenic drift

    Get PDF
    Ten antisera were produced in rabbits by two or three intravenous injections of inactivated whole influenza type A virions. All contained haemagglutination-inhibition (HI) antibody directed predominantly to an epitope in antigenic site B and, in addition, various amounts of antibodies to an epitope in site A and in site D. The ability of untreated antisera to select neutralization escape mutants was investigated by incubating virus possessing the homologous haemagglutinin with antiserum adjusted to contain anti-B epitope HI titres of 100, 1000 and 10000 HIU/ml. Virus-antiserum mixtures were inoculated into embryonated hen's eggs, and progeny virus examined without further selection. Forty percent of the antisera at a titre of 1000 HIU/ml selected neutralizing antibody escape mutants as defined by their lack of reactivity to Mab HC10 (site B), and unchanged reactivity to other Mabs to site A and site D epitopes. All escape mutant-selecting antisera had a ratio of anti-site B (HC10)-epitope antibody[ratio]other antibodies of [gt-or-equal, slanted]2·0[ratio]1. The antiserum with the highest ratio (7·4[ratio]1) selected escape mutants in all eggs tested in four different experiments. No antiserum used at a titre of 10000 HIU/ml allowed multiplication of any virus. All antisera used at a titre of 100 HIU/ml permitted virus growth, but this was wild-type (wt) virus. We conclude that a predominant epitope-specific antibody response, a titre of [gt-or-equal, slanted]1000 HIU/ml, and a low absolute titre of other antibodies ([less-than-or-eq, slant]500 HIU/ml) are three requirements for the selection of escape mutants. None of the antisera in this study could have selected escape mutants without an appropriate dilution factor, so the occurrence of an escape mutant-selecting antiserum in nature is likely to be a rare event

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Two view learning: SVM-2K, theory and practice

    Get PDF
    Kernel methods make it relatively easy to define complex highdimensional feature spaces. This raises the question of how we can identify the relevant subspaces for a particular learning task. When two views of the same phenomenon are available kernel Canonical Correlation Analysis (KCCA) has been shown to be an effective preprocessing step that can improve the performance of classification algorithms such as the Support Vector Machine (SVM). This paper takes this observation to its logical conclusion and proposes a method that combines this two stage learning (KCCA followed by SVM) into a single optimisation termed SVM-2K. We present both experimental and theoretical analysis of the approach showing encouraging results and insights

    A comparison of CMB- and HLA-based approaches to type I interoperability reference model problems for COTS-based distributed simulation

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are software used by many simulation modellers to build and experiment with models of various systems in domains such as manufacturing, health, logistics and commerce. COTS distributed simulation deals with the interoperation of CSPs and their models. Such interoperability has been classified into six interoperability reference models. As part of an on-going standardisation effort, this paper introduces the COTS Simulation Package Emulator, a proposed benchmark that can be used to investigate Type I interoperability problems in COTS distributed simulation. To demonstrate its use, two approaches to this form of interoperability are discussed, an implementation of the CMB conservative algorithm, an example of a so-called “light” approach, and an implementation of the HLA TAR algorithm, an example of a so-called “heavy” approach. Results from experimentation over four federation topologies are presented and it is shown the HLA approach out performs the CMB approach in almost all cases. The paper concludes that the CSPE benchmark is a valid basis from which the most efficient approach to Type I interoperability problems for COTS distributed simulation can be discovered

    Condensation cyclization reactions of electron deficient aromatics. 4: Tricyclic nitropropene nitronates from the reaction of phloroglucinol and cycloalkanones with sym-trinitrobenzene

    Get PDF
    Interesting similarities have been shown between the reactions of sym-trinitrobenzene with cycloalkanones, and with phloroglucinol. Previously unsuspected common intermediates have been shown to intervene. The structurally similar products in each case are tricyclic nitropropene nitronates. Protonation of these yields the corresponding nitronic acids in certain instances

    Three-State Feshbach Resonances Mediated By Second-Order Couplings

    Full text link
    We present an analytical study of three-state Feshbach resonances induced by second-order couplings. Such resonances arise when the scattering amplitude is modified by the interaction with a bound state that is not directly coupled to the scattering state containing incoming flux. Coupling occurs indirectly through an intermediate state. We consider two problems: (i) the intermediate state is a scattering state in a distinct open channel; (ii) the intermediate state is an off-resonant bound state in a distinct closed channel. The first problem is a model of electric-field-induced resonances in ultracold collisions of alkali metal atoms [Phys. Rev. A 75, 032709 (2007)] and the second problem is relevant for ultracold collisions of complex polyatomic molecules, chemical reaction dynamics, photoassociation of ultracold atoms, and electron - molecule scattering. Our analysis yields general expressions for the energy dependence of the T-matrix elements modified by three-state resonances and the dependence of the resonance positions and widths on coupling amplitudes for the weak-coupling limit. We show that the second problem can be generalized to describe resonances induced by indirect coupling through an arbitrary number of sequentially coupled off-resonant bound states and analyze the dependence of the resonance width on the number of the intermediate states.Comment: 27 pages, 4 figures; added a reference; journal reference/DOI refer to final published version, which is a shortened and modified version of this preprin
    corecore