
 1

COTS Distributed Simulation: A Comparison of CMB and HLA

Interoperability Approaches to Type I Interoperability Reference Model

Problems

Simon J E Taylor (1), Stephen J Turner (2),

Navonil Mustafee (1), Henrik Ahlander (3) and Rassul Ayani (3)

(1) Centre for Applied Simulation Modelling

Department of Information Systems and Computing

Brunel University

Uxbridge, UK

(2) Parallel and Distributed Computing Centre

School of Computer Engineering

Nanyang Technological University

Singapore

(3) Laboratory for Electronics and Computer Systems (LECS)

Royal Institute of Technology (KTH)

Stockholm, Sweden

Abstract

Commercial-off-the-shelf (COTS) simulation packages (CSPs) are software used by

many simulation modellers to build and experiment with models of various systems in

domains such as manufacturing, health, logistics and commerce. COTS distributed

simulation deals with the interoperation of CSPs and their models. Such

interoperability has been classified into six interoperability reference models. As part

of an on-going standardisation effort, this paper introduces the COTS Simulation

Package Emulator, a proposed benchmark that can be used to investigate Type I

interoperability problems in COTS distributed simulation. To demonstrate its use,

two approaches to this form of interoperability are discussed, an implementation of

the CMB conservative algorithm, an example of a so-called “light” approach, and an

implementation of the HLA TAR algorithm, an example of a so-called “heavy”

approach. Results from experimentation over four federation topologies are presented

and it is shown the HLA approach out performs the CMB approach in almost all

cases. The paper concludes that the CSPE benchmark is a valid basis from which the

most efficient approach to Type I interoperability problems for COTS distributed

simulation can be discovered.

1. Introduction

It is a well known fact that commercial-off-the-shelf (COTS) simulation packages

(CSPs), such as Arena, Automod, EMPlant, Prodmodel, Simul8, Taylor and Witness,

are software used by many simulation modellers to build and experiment with models

of various systems in domains such as manufacturing, health, logistics and commerce.

Swain (2001) reviews many of these. There is a growing body of research dedicated

to the study of COTS distributed simulation, the interoperation of CSPs and their

models (Taylor et al. 2003a). The High Level Architecture – COTS Simulation

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336480?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Package Interoperation Forum (HLA-CSPIF) (www.cspif.com) was created in August

2002 in an attempt to unify this research. For convenience, the use of interoperation

techniques to create a distributed simulation consisting of CSPs we will call COTS

distributed simulation. One of the outputs of the Forum is the classification of some

of the interoperability requirements of COTS distributed simulation on the basis of

interoperability reference models (Taylor 2003). These are:

 Type I - Asynchronous Entity Passing

 Type II - Synchronous Entity Passing (The Bounded Buffer Problem)

 Type III - Shared Resources

 Type IV - Shared Events

 Type V - Shared Data Structure

 Type VI - Shared Conveyor

There have been various attempts to interoperate models and the COTS simulation

packages in which they have been developed (Boer, et al. 2002; Gan and Turner 2000;

Hibino, et al. 2002; Lendermann, et al. 2001; McLean and Riddick 2000; Sudra, et al.

2000; and Taylor, et al. 2002). Most of these approaches deal with interoperability

problem of transferring an entity, or similar representation of temporary model state,

between models and their CSPs. This problem is described by the Type I

interoperability reference model Asynchronous Entity Passing, i.e. entities are passed

between distributed models as timestamped event messages with no other

synchronisation (the Type II interoperability reference model Synchronous Entity

Passing describes the interoperability requirements of passing entities to models that

receive them to a bounded buffer).

It is interesting to note that of the cited approaches to interoperability, roughly half

use software (a runtime infrastructure (RTI)) compliant with the High Level

Architecture (HLA) (IEEE 1516-2000 2000) and half do not. The motivations for its

use (and non-use) appear to be finely balanced. For example, a major factor in using

an RTI compliant with the HLA is that it is software based on a standard. The

development of an interoperability approach and associated software based on a

standard, at least in theory, infers widespread usability of that approach and its

software. However, the non-HLA camp cites arguments such as cost and

performance as significant factors against the use of HLA-complaint software. They

argue that although it was once possible to obtain “free” versions of an RTI, today one

cannot. Any interoperability solution based on the HLA will therefore add a

significant cost factor to the solution in that a RTI must be purchased. This is

possibly a false argument as any other approach to interoperability will ultimately

also add cost as those involved attempt to recoup their investment. More convincing

perhaps is the argument of performance. Over the past few years a perception has

grown that the HLA is too “heavy”, i.e. a HLA-compliant RTI is perceived to be

geared to supporting the communication of huge volumes of information in support of

large, real-time distributed simulations. It is argued that the communication needs of

substantially smaller COTS distributed simulation is “light” and therefore does not

need much of the RTI software. From this a view has appeared that immediately

discounts HLA approaches as being too cumbersome for the needs of COTS

distributed simulation.

 3

As part of an on-going community discussion, this paper attempts to compare a

“light” approach against a “heavy” approach to interoperation for COTS distributed

simulation. Our “light” approach is an implementation of the well-known Chandy-

Misra-Bryant (CMB) conservative time management protocol (Chandy and Misra

1978). Our “heavy” approach uses the DMSO RTI 1.3 NG version 5 and is based on

the time advance request (TAR) (Fujimoto 2000). We make the comparison on the

basis of the CSP Emulator (CSPE) described in the next section.

The rest of the paper is structured as follows. Section 3 and 4 discusses our “light”

and “heavy” approaches respectively. Section 5 presents results taken from

experimentation over four different interoperability scenarios using CSPE. Section 6

discusses our findings. Section 7 concludes the paper.

2. The COTS Simulation Package Emulator

The introduction to this work cited many good attempts to interoperate CSPs. A wide

variety of techniques are used to interface between interoperability middleware and

CSPs. A problem with this is that it is therefore difficult to make a comparison of

efficient interoperability solutions as the latency of the CSP interface can mask an

otherwise good approach (for example, some CSP interfaces only allow incremental

time advance and prevent more effective approaches to be adopted (Taylor, et al.

2003b review four different approaches to this).

The CSP Emulator (CSPE) was created to provide a benchmark through which

alternative approaches to COTS distributed simulation can be compared. It exhibits

the computational characteristics of a CSP without a visual interface. It uses a three-

phase simulation executive to perform the discrete event simulation of a simple model

(Schriber and Brunner (2002) provide a discussion of this and other simulation world

views). In the investigation of Type I interoperability reference model problems,

CSPE performs the simulation of a pipeline model shown in figure 1. As can be seen,

the model consists of set of FIFO queue-workstation pairs with an entry and exit

point. This was chosen as the simplest model that allows various experimental factors

relevant to the distributed simulation of Type I interoperability reference model

problems to be controlled while reflecting a realistic simulation modelling

environment (i.e. other, more complex Type I models could be created but with little

benefit to the investigation). There are three experimental factors in CSPE. These are

lookahead, workload (reflected by the ratio of arriving entities to the number of

internal events that will be generated as a result of an arrival, i.e. the number of

workstations) and entities generated (the number of entities generated by CSPE

during experimentation). The simulation and real time taken for a workstation to

process an entity, as well as the inter-arrival time of entities, can also be controlled. It

is assumed in CSPE that queues are unbounded.

W1 W2 W... Wn

Q1 Q2 Q… Qn

Figure 1: FIFO Pipeline Model used by CSPE

 4

The simulation of the model contained in CSPE is controlled via a simple API defined

in the CSPE-Handler (CH). Through this API, CH can advance CSPE’s simulation

time and send and receive entities to and from CSPE. CH also interfaces CSPE to

distributed simulation middleware via an interface determined by the form of the

middleware. The interface between CH and CSPE is implemented through sockets.

These relationships are shown in figure 2. The API is described as follows.

 start() is used to signal CSPE to start the simulation.

 advance(time) instructs CSPE to advance the simulation until time.

 advance(time, entity) instructs the CSPE to advance the simulation until time and

introduce the entity entity into the model at the entry point.

 output(time) is sent to CSPE-Handler from CSPE for several reasons depending

on the needs of the middleware. CSPE-Handler then passes this to the

middleware as appropriate.

 output(time, entity) is sent to CSPE-Handler when an entity entity leaves the

CSPE model exit point at time (effectively the time at which the last machine

processes the entity). CSPE-Handler then passes this to the middleware as

appropriate.

 terminate() This method is called by CSPE-Handler when it receives simulation

completion notification from CSPE. What this method will do is specific to the

middleware.

We now present our two approaches.

Federate BFederate A

COTS Simulation Package

Emulator (CSPE)

Model A

COTS Simulation Package

Emulator Handler (CH)

Federate

Interface

Distributed Simulation Middleware

CH Interface

COTS Simulation Package

Emulator (CSPE)

Model B

COTS Simulation Package

Emulator Handler (CH)

Federate

Interface

Entities transfered

between models at output

events

ie. An entity leaving model

A at t will arrive at model

B at t

CH Interface

Figure 2: COTS Simulation Package Emulator Relationships (Type I)

 5

3. CSPE-CMB

To investigate a so-called “light” approach we implemented the CMB algorithm and

linked it to the CH to form CSPE-CMB. In our implementation, null messages are

sent in the following two cases.

 After execution of every event and time advance caused by a null message.

 Whenever an incoming link from a federate is empty. In this case the CSPE-

CMB middleware sends null messages to other federates in order to resolve

possible deadlock.

To satisfy the known topology needs of CMB, the links between each federate (LP),

each federate must therefore know beforehand the other federates with which it will

interact during a simulation run. CSPE-CMB meets this condition by reading federate

topology information from a Federate Definition File. Link queues are set up in the

CH. The distributed simulation middleware in this case is just TCP/IP, with messages

passed via sockets and IP addresses connecting the CHs.

Under CMB, CSPE passes two kinds of messages to the CH. These are null

messages, with timestamp equal to the time of that CSPE has just advanced to (CH

currently adds lookahead – derived from the minimum timestamp increment of a

federate) and event messages that are sent to other federates. In terms of CSPE

interface messages, null messages are represented by output(time) and event messages

are represented by output(time, entity).

In order to guarantee that messages are sent in increasing timestamp order CSPE-

CMB implements a buffer for event messages in CH. Thus, event messages are not

sent immediately to other federates but are held in the buffer. Null messages are sent

immediately. When the timestamp of a null message (the current simulation time +

lookahead) equals or exceeds the timestamp of an event message in the buffer, only

then is the external message sent. If there is more than a single event message that

meets this condition, then all of them are sent before sending the null message. If the

“equals” condition is met, the null message is not sent.

All messages received by a CH are placed in appropriate link queues. When the CMB

algorithm identifies that the next message to be processed is a null message,

advance(time) is used to order CSPE to advance to that time (processing internal

events as appropriate). If the next message to be processed is an event message, then

advance(time, entity) is used to order CSPE to advance to that time and to introduce

the new entity (again processing internal event messages as appropriate).

4. CSPE-HLA

In the investigation of our “heavy” HLA-based approach, we developed a new variant

of CSPE called CSPE-HLA. To represent the transfer of entities from one CSPE

federate to another, CSPE-HLA uses interactions. Our justification of this is that it

has been shown by experimentation that for the RTI-1.3 NG version 5 interactions

have less latency than the other communication options. We base our implementation

on the Entity Transfer Specification, version 1.1.1 that has been developed by the

HLA-CSPIF to standardize the transfer of entities for the Type I interoperability

 6

reference model (Taylor, Turner and Low 2004). Figure 3 shows the interaction class

hierarchy. For example, for a CSPE-HLA named fedA to interact with another named

fedB, the interaction transferEntityfedATofedB would be used. fedB would subscribe

to all interactions with itself by subribing to transferEntityTofedB and fedA would

publish the interaction class transferEntityfedATofedB to send entities to fedB. As

with CSPE-CMB, CSPE-HLA uses the Federate Definition File to specify what other

federates a federate is connected to (as well as the lookahead. The interaction classes

are derived from this file. To use an interaction class, the CH of CSPE-HLA calls

getInteractionClassHandle(name), where name is the name of the interaction class, to

receive a handle to the interaction class. CSPE-HLA stores all handles to classes it

publishes in a hash table with the class names as keys for fast access since they are

needed every time an entity is sent.

To publish and subscribe to an interaction class a federate uses the methods

publishInteractionClass(handle) and subscribeInteractionClass(handle). To send and

receive objects the methods sendInteraction(handle, parameters, time, tag) and

receiveInteraction(handle, parameters, time, tag, eventRetractionHandle) used.

handle is the interaction class’s handle, parameters are the parameters of the

interaction class (in this case only the dummy message is used), time is the timestamp

of the object, tag is used for user-specified messages (not used in CSPE-HLA) and

eventRetractionHandle is a unique identity for each event message in the federation

(used in optimistic simulations for the retraction of objects, not used in CSPE-HLA).

The HLA has two main options available for conservative time advancement in a

distributed simulation composed of CSPEs. These use either timeAdvanceRequest()

(TAR) or nextEventRequest() (NER). As each approach gave similar performance

results, we limit our discussion of the implementation of CSPE-HLA to TAR. This

promises that a federate calling this method will not generate any timestamped events

with a timestamp lower than the requested time + lookahead. In our approach, the CH

first uses queryMinNextEventTime() to request the minimum next safe event time

from the RTI to allow its CSPE to advance to. When this call returns the next safe

event time safetime, the CH orders CSPE to advance until safetime. CSPE does this,

executing internal events as it does so. This continues until the next event to be

processed by CSPE is greater than safetime. If the next event is not equal to safetime,

CSPE will advance to safetime as it is safe to do so. For each internal event that is

processed, CSPE outputs output(time) and/or output(time, entity). When time equals

safetime, CH knows that CSPE has advanced as far as it can. When this occurs, CH

transferEntity

transferEntityToFedDestX

transferEntityFedSoA

ToFedDestX

transferEntityFedSoB

ToFedDestX

transferEntityToFedDestY

transferEntityFedSoC

ToFedDestY

transferEntityFedSoD

ToFedDestY

Figure 3: Interaction Class Hierarchy

 7

uses timeAdvanceRequest(time) to inform the RTI that its CSPE has reached the

correct safe time as determined by queryMinNextEventTime(). CH then uses

receiveInteraction(entity,time) to receive any new event messages sent from other

federates. These are buffered until timeAdvanceGrant() is asserted (i.e. all safe

messages have been delivered). CH introduces these to CSPE with

advance(time,entity). In the case of a single entity, when CSPE receives this, it will

process the entity at time, i.e. it will treat this as a bound event and schedule new

events and test conditional events as demanded by the B and C phases of the TPA

(this occurs repeatedly for multiple entities). The time advancement cycle continues

by calling queryMinNextEventTime() once again. Finally, if output(time, entity) is

received by CH, it is converted into the appropriate interaction and passed to the RTI

with sendInteraction(entity,time).

5. Experimentation

In this section we present our experimentation and results performed with the two

variants of CSPE. Four different federation topologies were used (pipeline, local

feedback, fully interconnected and producer-consumer) with three different

experiments (variable external/internal event ratio, variable workload and variable

lookahead). The federate topologies were chosen to reflect possible actual COTS

distributed simulation. It has been observed that actual or proposed distributed

simulations of industrial problem tend to have more than just simple connections, i.e.

entities can be passed between federates in a fixed but arbitrary relationship.

However, the first of our topologies, the pipeline (figure 4) is derived from the fact

that the most simple (theoretical) manufacturing model can be a simple series of work

processes. Entities are generated in source federate A and then passed in one

direction through all federates until they finally are removed after been processed in

federate F (sink). To investigate the effect of a more closely coupled relationship, our

second topology local feedback (figure 5) reflects the class of models where entities

represent, for example, rejected parts or confirmations of delivery. In our work, we

assume that the entity represents a batch. In the case where there is more than one

output, as with federate B, the output is chosen in a round robin manner. If the output

follows the “backbone” of the pipeline, the entity is passed on as normal. If, however,

a feedback loop is selected, we assume that part of the batch that the entity represents

is faulty. The entity therefore splits into two – one entity carries on along the pipeline

and the other is returned. The number of entities generated by the source federate A

is adjusted to keep the number of entities generated constant. This allows us to

analyse of the effect of extra coupling in the model (rather that the fairly obvious

result of spiralling workloads).

Our third topology, fully interconnected (figure 6) reflects the case where there is

local feedback and all federates can produce and consume entities. Entities are

generated and passed around in a round robin manner. In all cases apart from where

local feedback occurs, a received entity is consumed. If local feedback occurs

alternatively, for example entities sent from federate B to federate E are alternatively

consumed or split and returned after processing in federate E’s model. This topology

is included to represent a distribution network that is typical of some supply chains.

Finally, the fourth topology model reflects a real-world problem where several

producer models feed parts into a single consumer model (Taylor et al. 2002). This is

termed producer-consumer topology (figure 7).

 8

For each topology, three experiments were carried out: variable external/internal

event ratio, variable workload and variable lookahead. For the first of these, variable

external/internal event ratio, the ratio of external and internal events can be important

as represents the volume of events that can be processed relative to the volume of

event messages present in the distributed simulation. This is implemented by varying

the number of machines in each copy of CSPE. Tables 1-3 show the experiments

carried out. Note that the lookahead is equal to the setup and processing time for a

workstation, as it the number of entities processed by each federate. For variable

workload, the event ratio and lookahead are fixed so allowing us to investigate the

scalability of our approaches as the amount of entities to be processed increases. Our

final experiment allows us to investigate the effect of increasing lookahead on our

approaches.

Q-W-Q-W..

Federate A

Q-W-Q-W…

Federate B

Q-W-Q-W...

Federate C

Q-W-Q-W...

Federate D

Q-W-Q-W...

Federate E

Q-W-Q-W...

Federate F

Figure 4: Pipeline Topology

Q-W-Q-W...

Federate A

Q-W-Q-W...

Federate B

Q-W-Q-W...

Federate C

 C

Q-W-Q-W...

Federate D

Q-W-Q-W...

Federate E

Q-W-Q-W...

Federate F

Figure 5: Local Feedback Topology

Q-W-Q-W…
Federate E

Q-W-Q-W... Federate F

Q-W-Q-W...

Federate A

Q-W-Q-W...
Federate B

Q-W-Q-W... Federate C

Q-W-Q-W...

Federate D

Figure 6: Fully Interconnected Topology

 9

5.1 Results

Our performance tests were carried out on six computers connected through an

isolated 10 Mbit local area network. Six computers ran a single CSPE federate. In the

case of CSPE-HLA, a seventh computer was used to run the RTI Executive (RTI 1.3-

NG version 5). Each of the six federate computers was an Intel Pentium III 650 MHz

with 256 MB RAM running either Windows 2000 or Windows XP. The RTI

executive computer ran at 950 MHz. An automatic test harness was developed to run

the experiments. Each test was run three times with the result being taken as an

average (no significant variance due to the isolated local area network). Figures 8-11

show the results for the pipeline, local feedback, fully interconnected and producer-

consumer models respectively.

As can be seen, in variance of the external/internal event ratio, with a fixed workload

of 1000 entities and lookahead of 10, in all cases apart from the pipeline model, for

the CMB approach, execution time decreases slightly as the external event density

decreases there is little effect on the magnitude of federation execution time. The

opposite is true for the HLA approach, as the external event density decreases,

execution time slightly increases. The observation here is therefore as the effective

granularity of internal event processing increases CMB performs slightly better and

HLA performs slightly worse. However, the most obvious result from these

experiments is that HLA approach is far faster than the CMB approach. At an

external event density of 0.05 the HLA performs better by a factor of 5.58 in the local

feedback model, 6.53 in the fully connected model and 4.78 in the producer consumer

model. In the pipeline model as external event density decreases, the effect on both

CMB and HLA is more significant as both perform significantly worse. However, the

most interesting result is that in this case CMB out performs HLA (at an event density

of 0.05 by a factor of 1.27).

For variable workload, with a fixed event ratio of 0.2 and a lookahead of 10, an

increasing volume of entities passed through the simulation, effects both the CMB

and HLA approaches in a similar manner. For all models, as the volume of entities

increases both the CMB and HLA approaches take more time to complete their work.

Q-W-Q-W... Federate B

Q-W-Q-W... Federate A

Q-W-Q-W... Federate D

Q-W-Q-W... Federate C

Q-W-Q-W... Federate E

Q-W-Q-W... Federate F

Figure 7: Producer-consumer topology

 10

In all cases apart from the pipeline the HLA approach out performs the CMB

approach. In processing 1000 entities the HLA approach performs better by a factor

of 9.18 in the local feedback model, 12.30 in the fully connected model and 7.58 in

the producer consumer model. Again, in the pipeline model the relationship is

reversed with HLA performs marginally worse than the CMB approach by a factor of

1.63.

In terms of variable lookahead, with a fixed event ratio of 0.2 and workload of 1000

entities, as lookahead increases the effect on the CMB approach is to reduce the

overall execution time in all models apart from the pipeline. In this case, the effect of

increasing lookahead is negligible. The effect on the HLA approach is reversed; in all

models apart from the pipeline the effect of increasing lookahead is negligible. In the

pipeline model the HLA approach is significantly affected by increasing lookahead as

execution time decreases with larger values of lookahead. Overall HLA out performs

CMB in all models apart from the pipeline. In the pipeline model this relationship is

reversed with CMB out performing HLA. In our results the smallest value of

lookahead is 2 and the largest is 10 (the maximum possible value of lookahead - equal

to the length of simulation time taken for a workstation to complete its task). At

lookahead value 2, the HLA out performs CMB by a factor of a factor of 17.45 in the

local feedback model, 22.20 in the fully connected model and 14.29 in the producer

consumer model. In the pipeline model, CMB out performs HLA by a more marginal

factor of 2.84. At the maximum value of lookahead, the HLA out performs CMB by

a factor of a factor of 9.67 in the local feedback model, 12.07 in the fully connected

model and 7.75 in the producer consumer model. In the pipeline model, CMB out

performs HLA again by a marginal factor of 1.63.

The above observations on our results can be summarised as follows.

 In all models apart from the pipeline model and in all experiments the HLA

approach performs better than the CMB approach,

 In the pipeline model in all experiments the CMB approach performs marginally

better than the HLA approach.

6. Discussion

Our results indicated that in almost all cases our heavy approach out performed the

light approach. Let us consider why this is the case. In the CMB approach, a federate

must stop execution until it has established a safe condition under which it may

advance time. This means it cannot advance until messages are present in all input

link queues. To prevent possible deadlock, the CMB approach uses timestamped null

messages to allow federates which cannot process any event messages to inform other

federates safe times to advance to. Generally, for a federate to advance time in the

CMB approach, both null messages and event messages must be consumed. In the

HLA approach time progression is essentially a cycle of requesting the minimum next

safe event time from the RTI software, advancing to that time and then checking for

new event messages. The calculation of the new safe times is depending on all

federates performing the request. The actual calculation is based on what interactions

have been sent between federates and the lookahead. In general we can therefore

observe that time progression in the CMB approach can be limited by the availability

 11

of information in each link queue, and in the HLA approach by the time taken for all

federates to request from the RTI the next safe time to which to advance.

From this, our results can be explained as follows. In the case of the pipeline where

the CMB approach performs marginally better than the HLA, the progression of the

CMB federates is almost always via the processing of event messages as they appear

on the input links. Null messages occasionally appear as a result of delayed

processing (especially at the beginning of the run) but are insignificant in numbers.

There is therefore very little wasted processing. In our HLA approach, as the next

safe time cannot be calculated until all federates have requested this, and all messages

have been delivered, there is a comparative delay between request and action. It is

this delay which causes this HLA approach to perform worse than the CMB approach.

In all other cases, the presence of a feedback loop means that the CMB federates

cannot progress until null messages have been propagated across their input links.

These must then be processed. In the HLA approach, the federates are just required to

follow a simpler cycle to request permission to advance time. It is this simpler time

advancement cycle that allows the HLA experiments to perform significantly better

than the CMB approach.

7. Conclusions

As part of an on-going community discussion, this paper has attempted to compare a

“light” CMB-based approach against a “heavy” HLA-based approach to

interoperation for COTS distributed simulation. The COTS Simulation Package

Emulator has been introduced as a benchmark for the comparison of different

approaches. Experiments over four topologies have been presented and discussed,

and it has been shown that for almost all cases the HLA-based approach out performs

the CMB approach.

Rather than the unrealistic conclusion that the “heavy” HLA or “light” CMB

approaches is best, the contribution of this paper is, from the perspective of COTS

distributed simulation, is the foundation for the search for the best interoperability

solution. The COTS Simulation Package Emulator is the first benchmark that has

made possible an informed discussion between interoperability approaches. Our

results have indeed shown that for all experiments except the pipeline, the HLA

approach out performs the CMB. However, it is important to note that it is entirely

possible to improve on our so-called approaches. For example, Fujimoto (2003) notes

that both conservative and HLA RTI approaches have several different forms that

might lead to better performance for CSP distributed simulation. For example, the

CMB approach can be made more efficient through revisiting the exploitation of

“distance” between federates (Ayani 1989; Cai and Turner 1990) and lookahead

(Meyer and Bagrodia 1999). The HLA approach as presented is essentially a

modification of the TAR-based conservative time-stepped behaviour. The alternative

next event request (NER) and flush queue request (FQR) are the basis of conservative

event-driven and optimistic protocols and could possibly form the basis of better

performance. Indeed, other approaches such as the FAMAS backbone (Boer, et al

2002) may also yield better results. However, without the existence of the CSPE

benchmark it would be difficult to make an informed comparison as to which

approach is best.

 12

In conclusion, we hope that the CSPE-based work presented here will eventually lead

to consensus on the “best” performing approach to the Type I interoperability

reference model problem. Forms of CSPE for optimistic protocols and the Type II

interoperability reference model are currently under development.

References

Ayani, R. (1989). A Parallel Simulation Scheme Based on the Distance Between

Objects. Proceedings of the SCS Multiconference on Distributed Simulation,

Society for Computer Simulation. 21: 113-118.

Boer, C. A., A. Verbraeck, and H.P.M. Veeke. (2002) The Possible Role of a

Backbone Architecture in Real-Time Control and Emulation. In Proceedings of

the 2002 Winter Simulation Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon,

and J. M. Charnes (eds.) Association for Computing Machinery Press, New York,

NY. 1675-1682.

Cai, W. and S. J. Turner (1990). An Algorithm for Distributed Discrete-Event

Simulation -- the “Carrier Null Message” Approach. Proceedings of the SCS

Multiconference on Distributed Simulation, SCS Simulation Series. 22: 3-8.

Chandy, K. M. and J. Misra. (1978) “Distributed Simulation: A Case Study in Design

and Verification of Distributed Programs.” IEEE Transactions on Software

Engineering SE-5(5): 440-452.

Fujimoto, R. M. (2000) Parallel and Distributed Simulation Systems, Wiley

Interscience.

Gan, B.P., and S.J. Turner. (2000) An asynchronous protocol for virtual factory

simulation on shared memory multiprocessor systems. Journal of Operational

Research Society, 51: 413-422.

Hibino, H, Y. Fukuda, Y. Yura, K. Mitsuyuki and K. Kaneda. (2002) Manufacturing

Adapter of Distributed Simulation Systems Using HLA. In Proceedings of the

2002 Winter Simulation Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon, and

J. M. Charnes (eds.) Association for Computing Machinery Press, New York, NY.

1099-1107.

IEEE Std 1516-2000 (2000) IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA), Institute of Electrical and Electronics Engineers,

New York, NY.

Lendermann, P., B.P. Gan and L.F. McGinnis. (2001) Distributed Simulation with

Incorporated APS Procedures for High-Fidelity Supply Chain Optimization. In

Proceedings of the 2001 Winter Simulation Conference, B. A. Peters, J. S. Smith,

D. J. Medeiros, and M. W. Rohrer, (eds.) Association for Computing Machinery

Press, New York, NY. 1138-1145.

Meyer, R. A. and R. L. Bagrodia (1999). Path Lookahead: A Data Flow View of

PDES Models. Proceedings of the 13th Workshop on Parallel and Distributed

Simulation. IEEE Press 12-19.

McLean, C. and F. Riddick. (2000) The IMS MISSION Architecture for Distributed

Manufacturing Simulation. In Proceedings of the 2000 Winter Simulation

Conference. J.A. Joines, R.R. Barton, K. Kang, and P.A. Fishwick (eds.).

Association for Computing Machinery Press, New York, NY.1539-1548

Schriber, T.J. and D.T. Brunner. 2002. Inside discrete-event simulation software:

How it works and why it matters. In Proceedings of the 2002 Winter Simulation

Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes (eds.)

Association for Computing Machinery Press, New York, NY. 97-107.

 13

Sudra, R., S.J.E. Taylor, and T. Janahan. (2000) Distributed Supply Chain Simulation

in GRIDS’. In Proceedings of the 2000 Winter Simulation Conference. J.A.

Joines, R.R. Barton, K. Kang, and P.A. Fishwick (eds.). Association for

Computing Machinery Press, New York, NY. 356-361.

Swain, J. J. (2001) Power tools for visualization and decision making: 2001

simulation software survey. OR/MS Today 28(1): 52-63.

Taylor, S.J.E. (2003) HLA-CSPIF: The High Level Architecture – COTS Simulation

Package Interoperation Forum. In Proceedings of the Fall 2003 Simulation

Interoperability Workshop. Simulation Interoperability Standards Organisation,

Institute for Simulation and Training. Florida. 03F-SIW-126.

Taylor, S.J.E., R. Sudra, T. Janahan, G. Tan and J. Ladbrook. (2002) GRIDS-SCS: An

Infrastructure for Distributed Supply Chain Simulation. SIMULATION. 78(5):

312-320.

Taylor, S.J.E., B.P. Gan, S. Strassburger, A. Verbraeck. (2003a) HLA-CSPIF

Technical Panel on Distributed Simulation. In Proceedings of the 2003 Winter

Simulation Conference. Association for Computing Machinery Press, New York,

NY. 881-887.

Taylor, S.J.E., J. Ladbrook and J. Sharpe. (2003b) Time Management Issues in COTS

Distributed Simulation: A Case Study. In Proceedings of the 2003 Winter

Simulation Conference. Association for Computing Machinery Press, New York,

NY. 838-846.

Taylor, S.J.E., S.J. Turner and M. Y.-H. Low. (2004) A Proposal for an Entity

Transfer Specification for COTS Simulation Package Interoperation. In

Proceedings of the European 2004 Simulation Interoperability Workshop.

Simulation Interoperability Standards Organisation, Institute for Simulation and

Training. Florida. 03E-SIW-126.

 14

Table 1: Variable External/Internal Ratio

Experiment Entities Machines

External

events

Internal

events

External/

internal

ratio

Machine

Setup

time

Machine

Processing

time Lookahead

1 1000 1 1 1 1 5 5 10

2 1000 2 1 2 0.5 5 5 10

3 1000 5 1 5 0.2 5 5 10

4 1000 10 1 10 0.1 5 5 10

5 1000 20 1 20 0.05 5 5 10

Table 2: Variable Workload

Experiment Entities Machines

External

events

Internal

events

External/

internal

ratio

Machine

Setup

time

Machine

Processing

time Lookahead

1 1 5 1 5 0.2 5 5 10

2 10 5 1 5 0.2 5 5 10

3 100 5 1 5 0.2 5 5 10

4 250 5 1 5 0.2 5 5 10

5 500 5 1 5 0.2 5 5 10

6 1000 5 1 5 0.2 5 5 10

Table 3: Variable Lookahead

Experiment Entities Machines

External

events

Internal

events

External/

internal

ratio

Machine

Setup

time

Machine

Processing

time Lookahead

1 1000 5 1 5 0.2 5 5 2

2 1000 5 1 5 0.2 5 5 4

3 1000 5 1 5 0.2 5 5 6

4 1000 5 1 5 0.2 5 5 8

5 1000 5 1 5 0.2 5 5 10

 15

Variable External / Internal Event Ratio

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 0.5 0.2 0.1 0.05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Workload

0

5000

10000

15000

20000

25000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Lookahead

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Figure 8: Performance Results for Pipeline Topology

 16

Variable External / Internal Event Ratio

0

50000

100000

150000

200000

250000

300000

1 0.5 0.2 0.1 0.05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Workload

0

50000

100000

150000

200000

250000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Lookahead

0

200000

400000

600000

800000

1000000

1200000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Figure 9: Performance Results for Local Feedback Topology

 17

Variable External / Internal Event Ratio

0

50000

100000

150000

200000

250000

1 0.5 0.2 0.1 0.05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Workload

0

50000

100000

150000

200000

250000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Lookahead

0

200000

400000

600000

800000

1000000

1200000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Figure 10: Performance Results for Totally Interconnected Topology

 18

Variable External / Internal Event Ratio

0

50000

100000

150000

200000

250000

300000

1 0.5 0.2 0.1 0.05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Workload

0

50000

100000

150000

200000

250000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Variable Lookahead

0

200000

400000

600000

800000

1000000

1200000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

L
IS

E
C

O
N

D
S

TAR

CMB

Figure 11: Performance Results for Producer-Consumer Topology

