
Improving “bag-of-keypoints” image

categorisation: Generative Models and

PDF-Kernels

J.D.R. Farquhar Sandor Szedmak Hongying Meng
John Shawe-Taylor

Image Speech and Intelligent Systems
Department of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK

email:[jdrf;ss03v;hm1;jst]@ecs.soton.ac.uk

February 17, 2005

Abstract

In this paper we propose two distinct enhancements to the basic
“bag-of-keypoints” image categorisation scheme proposed in [4]. In this
approach images are represented as a variable sized set of local image
features (keypoints). Thus, we require machine learning tools which
can operate on sets of vectors. In [4] this is achieved by representing
the set as a histogram over bins found by k-means. We show how this
approach can be improved and generalised using Gaussian Mixture Models
(GMMs). Alternatively, the set of keypoints can be represented directly
as a probability density function, over which a kernel can be defined. This
approach is shown to give state of the art categorisation performance.

Keywords: image categorisation, “bag-of-keypoints”, GMM, SVM

1 Introduction

The performance of an image categorisation system depends mainly on two
ingredients, the image representation and the classification algorithm. Ideally
these two should be well matched so the classification algorithm works well with
the given image representation. Traditionally, the machine vision community
has focused upon developing powerful image representations for categorisation
and recognition problems, such as local feature descriptors. However there is
a growing realisation of the necessity to identify machine learning algorithms
which can effectively exploit the information provided in these representations.

Local features [14, 10] are very powerful image representation for categori-
sation problems, as seen by the state of the art performance of [4]. However,
the image representation they produce is an unordered set of feature vectors,
one for each interest point found in the image. This poses problems for most
machine learning algorithms which expect a fixed dimensional feature vector

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29138135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Machine Learning

L
ab

el
s

Processing
Image

Test

Training

Se
t o

f S
IF

T
de

sc
ri

pt
or

s

C
en

te
rs

H
is

to
gr

am
s

C
la

ss
if

ie
r

H
is

to
gr

am
G

en
er

at
io

n

Classifier
Learning

(SVM)

C
la

ss
if

ic
at

io
n

Extraction

(SIFT)

Feature
Image

Images

Dataset
(k−means)

Keypoint
Identification

Figure 1: The “bag-of-keypoints” image categorisation approach as developed
in [4]

as input. In [4] this problem is overcome by encoding the set of vectors as a
histogram. As the set of histogram bins is fixed for all images this produces an
ordered fixed length representation of the input set of feature vectors. However
histogramming looses all information about the position of a keypoint within a
bin – information which potentially could be useful for categorisation.

In this paper we investigate alternatives to histogramming for set-of-vector
type input features which may provide improved performance. In particular we
investigate Gaussian Mixture Models (GMMs) as a more powerful and general
alternative to histograms. We then go on to examine new kernels which have
been recently proposed [7, 12] which work directly on set-of-vector inputs. The
performance of these alternatives is assessed on a new benchmark generic image
categorisation task and compared to state of the art approaches.

1.1 The “bag-of-keypoints” approach

In this section we describe the “bag-of-keypoints” approach to image categorisa-
tion as developed by [4]. As shown in Figure 1 this consists of three main steps;
1) image local feature extraction, 2) key-point identification and histogramming,
and 3) classifier learning. We discuss each of these steps in turn.

1.1.1 Local image feature extraction

As mentioned above identification of a good image representation is key to
effective image categorisation. In computer vision local descriptors have proved
well-adapted to this purpose. Local descriptors are image features which are
defined over a limited spatial extent. For image categorisation this locality
provides robustness to partial visibility and occlusion as at least some of the
descriptors should be visible in all cases. For example, at least one wheel of a
car is visible from any aspect, hence a local descriptor for wheels will be robust to
car viewpoint changes. For local descriptors to be useful in this way they should
ideally repeatable such that the corresponding object points are detected and
given (ideally) the same description when the object type undergoes the likely
transformations, such as viewpoint, illumination or instance changes. Thus, in
the car example we would like the wheel detector to produce the same wheel
description for different types of car, imaged from different directions under
different illuminations. This need has motivated the development of several
scale and affine invariant image patch detectors, as well as descriptors which

2



are robust to geometric and illumination changes [10, 14].
The local descriptor generation process consists of two stages; 1) patch

detection where local image patches which containing “interesting” features are
identified and 2) descriptor generation where a feature vector describing the
local patch is generated. In [4] a Harris affine invariant patch detector is used.
This detects elliptical patches in an image which are local maxima in position
of a scale adapted Harris function and a local maxima in scale of the Lapacian
operator. The resulting elliptical patch is then mapped to circular region about
the ellipse major axis to provide an affine invariant local image patch. Scale
Invariant Feature Transform (SIFT) features [10] are then computed on this
patch. SIFTs describe an image patch in terms of its Gaussian derivatives
computed in 8 directions at a 4x4 grid of positions within the patch. Thus the
descriptor is invariant to illumination changes in the patch and has a final size
of 128 dimensions.

Recently, [11] have conducted an extensive compassion of the repeatability of
different local descriptors and found that SIFT descriptors generally performed
best. Thus, we have used the same descriptors in this work.

1.1.2 Key-point identification and histogramming

Given a set of patch descriptions for each image the next main stage of the
“bag-of-keypoints” approach is to identify a set of key-points which are in some
way prototypes of a certain types of image patch. In [4] the keypoints are found
using a simple k-means [15, p. 273] unsupervised learning procedure over the
taring set. The key-points are then used to map each image’s set of patch
descriptors to a histogram over keypoints. The identification of such key-points
has two purposes; firstly it provides some robustness to descriptor variations as
similar patch descriptors are mapped to the nearest key-point, and secondly as
all images are mapped using the same set of key-points it provides a fixed length
description of the input set of patch descriptors.

Notice that this approach ignores all global geometric information about
the relative positions of the image patches. As such geometric information
is inherently very viewpoint dependent, removing this information provides
additional robustness to viewpoint changes. However, given the subjective
importance of shape in human object categorisation, it is quite surprising to this
author that object categorisation systems perform as well as they do without
this information. There have however been some recent efforts to re-introduce
this geometric information to improve object categorisation performance [5].

As a further motivation for the key-points representation given in [4] is
by analogy to the “bag-of-words” which has been very successful in text
categorisation. This also looses much of the subjectively important geometric
information contained in a document but provides surprisingly accurate results.
The idea is that the key-points represent some form of “visual vocabulary”
which allows for the description of any many types of image, perhaps including
completely new categories not seen during the initial key-point identification.
There is some evidence that this may indeed be true as [4] show that the
keypoints computed for one categorisation task are almost as effective for a
different task as ones computed specifically for that task.

3



1.1.3 Classifier Learning

The final main stage of the “bag-of-keypoints” approach is a traditional multi-
class learning problem where a multi-class classifier must be learnt based
upon the computed image keypoint histograms. In [4] na ive Bayes and SVM
classifiers are compared for the learning task, with the SVM with a linear kernel
giving significantly better performance.

2 Improving “bag-of-keypoints”

The “bag-of-keypoints” approach to image categorisation is clearly a novel and
highly effect image categorisation method. However there appear to be a number
of areas where its categorisation performance could be improved by application
of more advanced machine learning techniques.

Firstly, it is clear that the final categorisation performance depends critically
on the chosen set of keypoints – they implicitly determine what differences
between patch descriptors are visible to the learning algorithm for it to make
categorisation decisions on. Thus, the keypoint identification should be made
part of the learning process to ensure that discriminative distinctions are
preserved whilst irrelevant ones are suppressed. This is analogous to the
stemming techniques used in text categorisation which are designed to remove
irrelevant differences whilst preserving discriminative differences.

Secondly, we can view the image histogram as representing the set of input
feature vectors by an estimate of their density distribution. A histogram is
obviously a crude representation of this inherently continuous density profile.
Thus, it would appear that by improving this density representation to more
accurately represent the input feature set (with appropriate regularisation
to ensure robustness to patch variations) we could improve the classifiers
performance.

Finally, the whole need for histogramming only arises because learning
algorithms traditionally required fixed length features as input. Recently a
number of kernels have been proposed [7, 12] which allow SVMs (and other
kernel based learning algorithms) to work directly with sets of vectors. Allowing
the learning algorithm to work directly with the input features potentially allows
for superior performance as no potentially discriminative information is lost in
the histogramming process. Avoiding the histogramming has the additional
significant computational advantage of removing the need to perform the costly
key-point identification.

3 Gaussian Mixture Models

A GMM [13] is a generative model of an input set of points where it is assumed
that each point is generated independently from the same underlying probability
density function (PDF). The GMM model this underlying PDF is a weighted
mixture of a set of, M , Gaussian distributions each centred in a different part
of the input space with its own covariance structure. That is the GMM models

4



the PDF as,

P(x|p, µ,Σ) =

M
∑

m=1

P(m)P(x|m) =

M
∑

m=1

pmN (x|µm, Σm), (1)

where, P(m) = pm is the prior probability that a new point is generated by
Gaussian m, and N (x|µm, Σm) is the probability that the point x was generated
by a Gaussian with mean µm and covariance Σm.

By treating each mixture component as a keypoint it is clear that a
Gaussian Mixture Model (GMMs) is a direct generalisation of the histogram
for approximating a density models. However, the GMM has a number of
advantages compared to histograms for representing density models.

Firstly, as each component has its own covariance structure a points
similarity to the keypoint is not based solely on the Euclidean distance to the
keypoint but upon some local measure of the importance of different feature
components. Thus different clusters can emphasise different feature components
depending on the structure they are trying to represent, essentially this allows
for a type of per-keypoint feature selection.

Secondly, by using the probability that a mixture component generated a
point, (known as the component responsibility, P(m|x)), as a generalisation
of bin membership in histogram generation we obtain a much smoother (and
hopefully more noise tolerant) approximation to the input sets density model.
This approach also allows a point to contribute to more than one keypoint if
necessary implicitly encoding more information about the position of a point
into the output generalised histograms.

Of course this flexibility comes at a price, as the number of parameters
which much be learnt to encode a GMM with the same number of centres is
much higher than for simple histograms, O(M(d2/2+ d)) compared to O(Md).
This large number of parameters poses two problems, firstly it is easily possible
that there are more parameters than data points causing the learning problem
to become ill-posed, secondly with so many parameters it is relatively easy for
the GMM to over-fit the training data leading to poor performance on the test
set. Both of these problems can be overcome (to some extent) by regularising
the GMM training process.

3.1 Regularisation – MAP-EM

Usually GMMs are trained using the Expectation Maximisation (EM) [3, p. 65]
algorithm to find a maximum likelihood (ML) parameter set. This is the set of
parameters, θ∗ml, which maximise the data likelihood, L(X, θ), of the data set,
X . That is,

θ∗ml = argmax
θ

L(X, θ) = argmax
θ

∏

x∈X

P(x|θ), (2)

where the second equality follows because we assume the data points are
generated independently.

However, this approach suffers from the problem that the true ML solution is
one which places an infinitely narrow Gaussian over some of the data points and
ignores the rest. This is clearly an undesirable situation, and arises because the
ML criterion does not constrain the parameters in a sensible way. In practice

5



this is not as severe a problem as it appears as EM tends to get caught in some
other more acceptable local minima first.

To avoid this behaviour we need to constrain the parameters of the GMM
to incorporate our prior beliefs about the true solution. Such restrictions
can also be used to prevent the GMM from over-fitting the data and hence
should be viewed as a form of regularisation. One way of incorporating this
prior information is to simply penalise low covariance solutions within the ML
framework.

A more principled approach within the Bayesian framework is to express
our prior beliefs as a prior distribution over the GMMs parameters, P(θ|H),
where H are the hyper-parameters which determine the prior. We can use this
prior along with Bayes rule to compute the posterior distribution of the GMMs
posterior parameters with respect to the data, P(θ|X) = P(X |θ)P(θ)/P(X).
Theoretically integrating over this posterior distribution we obtain the best
possible estimate of any parameter of interest, such as responsibility of a
component in generating a data sample, P(m|X2) =

∫

θ
P(m|X2, θ)P(θ)dθ.

However, working with distributions over parameters can be cumbersome
and computationally expensive, particularly as we need to integrate over the
parameter distributions to compute any final result. Conjugate priors or
variational approximations, such as the variational EM algorithm [13], can be
used to significantly reduce the problems of the Bayesian approach.

However, in this work we use the simpler single Maximum a-posterior (MAP)
estimate of the GMM parameters. This is the set of parameters, θ∗map, which
maximise the posterior data likelihood. That is,

θ∗map = argmax
θ

P(X, θ|H) = argmax
θ

P(X |θ)P(θ|H), (3)

where we have assumed the data-set X is conditionally independent of the prior
parameters H, so P(X,H) = P(X)P(H). Using the appropriate conjugate prior
distributions for the GMMs parameters the MAP GMM parameter estimate can
be computed using a simple variation to the EM algorithm, called the MAP-EM
algorithm, as shown in [13]. Briefly, the MAP-EM algorithm works by adding
the prior information as a penalty parameter which penalises parameter setting
which have low prior probability in the log-likelihood approximation optimised
by the EM algorithm. That is in MAP-EM we optimise the data log posterior,

log(P(X, θ|H)) = log(P(X |θ)P(θ|H)) = log(P(X |θ)) + log(P(θ|H), (4)

The first part of (4) is just the data likelihood as for normal EM, the second
part is the penalty imposed by the prior on the parameter values.

To optimise this function we use the standard EM trick of rewriting

log(P(X |θ)) as
∑

x∈X log(P(x|θ)) =
∑

x∈X log
(

∑M

m=1 P(x, m|θ)
)

by the inde-

pendence assumption and the fact that this is a mixture of M components. We
then switch to optimising the change in log likelihood with respect to a previous

6



set of parameter values θ0, using,

log(P(x|θ)) = log(

M
∑

m=1

P(m|x, θ0)
P(x, m|θ)

P(m|x, θ0)
(5)

≥
M
∑

m=1

P(m|x, θ0) log

(

P(x|m, θ)

P(m|x, θ0)

)

(6)

=
M
∑

m=1

P(m|x, θ0)
[

log(P(x|m, θ)) − log(P(m|x, θ0))
]

, (7)

where the inequality follows by application of Jensen’s inequality. With respect
to the optimisation problem the second term in brackets (log(P(m|x, θ0))) is
unimportant as it is independent of θ and can be dropped. Thus we can find
the MAP GMM parameter estimate by iteratively solving the equation,

θ(t+1) = argmax
θ

{

∑

x∈X

∑M
m=1 P(m|x, θ(t)) log(P(x|m, θ)) + log(P(θ|H))

subject to
∑M

m=1 P(m|θ) = 1
(8)

The first part of this problem is identical to that solved to find the ML solution in
normal EM, the second is the penalty due to the prior. To find a solution to this
problem we require a formulation for the prior which is amenable to analysis.
A conjugate prior where each individual mixture components parameters are
treated independently is most appropriate in for this. For the case of a
GMM this prior consists of a normal distribution, N (µm|νm, η−1

m Σm), for each
component Gaussian’s mean, a Wishart distribution, W(Σ−1

m |αm, βm) for each
components covariance matrix, and a Dirichlet density D(p|γ) for the vector
of the component priors pm. Combining these densities together the prior over
GMM parameters has the form,

P(θ|H) = P(p, µ,Σ|ν, η, α, β, γ) = D(p|γ)

M
∏

i=1

N (µi|νi, η
−1
i Σi)W(Σ−1

i |αi, βi).

(9)
This equation and then be substituted into (8) and the resulting equation solved
for θ(t+1) using standard techniques. The derivation is long and technical but
not difficult and so omitted here, the interested reader is referred to [13]. The
result of this derivation is the following set of parameter update equations,

p(t+1)
m =

∑

x∈X P(m|x, θ(t)) + γm − 1

|X |+
∑M

i=1(γi − 1)
(10)

µ(t+1)
m =

∑

x∈X P(m|x, θ(t))x + νmηm
∑

x∈X P(m|x, θ(t)) + ηm

(11)

Σ(t+1)
m =

∑

x∈XP(m|x, θ(t))(x−µm)(x−µm)T + ηm(µm−νm)(µm−νm)T + 2βm
∑

x∈X P(m|x, θ(t)) + 2αm − d
(12)

Notice, that to compute these updates we only require the sufficient statistics of
each mixture component, specifically only

∑

x∈X P(m|x, θ(t)),
∑

x∈X P(m|x, θ(t))x,

and
∑

x∈X P(m|x, θ(t))xxT . As all these statistics can be computed incremen-
tally during a single pass through the data-set X taking time linear in the size

7



of the data-set, and (more importantly for large data-sets) space quadratic in
the dimension of the data-set per-mixture component. Thus, as the number of
iterations to convergence approximately linear in the data-set size, MAP-EM
tends to require O(|X |2) time and O(Md2) space. A further trick used to reduce
the running time of the MAP-EM algorithm is to initialise the mixture means
with centre locations found by k-means, in our experience this tends to reduce
the number of iterations to convergence by about a factor of three.

3.1.1 Prior determination

To use the MAP-EM training regime we need to set the prior parameters,
ν, η, α, β, γ. One advantage of using conjugate priors is that these hyper-
parameters can be interpreted as the sufficient statistics of an additional artificial
data-set. If the additional data X0 is generated by a Gaussian mixture with
M components, then in the absence of additional information, the posterior
distribution of GMM parameters is,

p ∼ D(|XO
1 | + 1, |XO

2 | + 1, . . . , |XO
M | + 1) (13)

µm|Σm ∼ N (µ0
1, |X

0
1 |

−1Σm) (14)

Σ−1
m ∼ W

(

|X0
m| + d

2
,
|X0

m|

2
Σ0

m

)

(15)

where, X0
i is the subset of X0 generated by mixture component m and µ0

m, Σ0
m

are this subset’s sample mean and covariance respectively. Comparing this to
the definition of the conjugate prior (9) we see that,

νm = µ0
m, ηm = |X0

m|, γm = |X0
m| + 1, (16)

αm = (|X0
m| + d)/2, βm = |X0

m|Σ0
m/2. (17)

Thus, given some prior component means, µ0, covariances, Σ0
m, and component

data weights |X0
m| (which are equivalent to the components prior probability

p0
m), we can compute the equivalent hyper-parameters. Further, the importance

of the prior in determining the final MAP parameters can be varied by
treating the component data weights, |X0

m|, as different when computing the
hyper-parameters governing the mean (νm, ηm), covariance (αm, βm) and prior
probability vector (γm). We denote these weights as Wµ, WΣ, and Wp for the
mean, covariance and component prior probabilities respectively. Varying the
component data weights in this way is equivalent to regularising each of the
GMMs parameters independently.

3.2 Dimensionality Reduction

Regularising the GMM training using a prior goes some way to stopping it
over-fitting the training set. However, the high dimensionality of the SIFT
features themselves pose some problems for GMMs. Firstly, as the dimension
increases the effect of noise on the distances between points also increase, i.e.
|x − (x + δ)|2 = |δ|2 =

∑

d δ2
d. Thus, in high dimensions even a small additive

noise can make points which were close look further way and move far apart
points close together. This effect is magnified by the exponential in the Gaussian
distribution, such that even small changes in distance can result in a large change
in probability.

8



To reduce this effect we pre-process the feature set to reduce its dimension
prior to training the GMM. Clearly, reducing the data dimension removes
information from the data set. To maximise performance we wish to ensure
that only information irrelevant to final classifier performance is removed. Thus,
(like keypoint selection itself) dimensionality reduction must be viewed as an
additional learning stage where the most relevant directions of the input feature-
space are identified and the remaining noisy directions discarded.

Of the many dimensionality reduction algorithms available, such as LDA,
CCA etc, we have used two of the simplest in this work.

3.2.1 Principle Components Analysis

Principle Components Analysis (PCA) [3, p. 310] is probably the simplest and
most widely used dimensionality reduction technique. It works by finding the
directions in input space which have the largest covariance and mapping the
input to this subspace, (conversely this can be seen as discarding the directions
with lowest variance). The institution behind this approach is that because the
directions of high covariance contain most of the information required to re-
construct the original data-set they most also contain most of the information
required to discriminate the different classes.

Finding the appropriate PCA sub-space is very simple as it turns out that the
largest eigenvalues and eigenvectors of the data covariance matrix, correspond
to the directions of largest variance in the data-set. Thus, to compute an n
dimensional PCA subspace we simply compute the data covariance matrix,
find its n largest eigenvalues, {λ1, . . . , λn}, and associated eigenvectors, Un =
[u1, . . . , un], and then map the original data to this sub-space, Xn = XUT

n .
Choosing the number of reduced dimensions n amounts to an additional

regularisation parameter which should be found by experimentation. However,
simply looking at the graph of eigenvalues can give a good indication of the best
range of n as in many cases most of the variance is obviously concentrated in
the top few directions with the rest having very low variance.

3.2.2 Partial Least Squares

Whilst intuitively simple one problem with PCA is that it takes no account of the
class labels when identifying sub-space directions. Thus, as shown in Figure 2
if the differences between objects in the same class (intra-class variability) are
much greater than the differences between objects in different classes (inter-
class variability) then PCA will attempt to preserve the intra-class variability
and discard the (discriminatively useful) inter-class variability.

Partial Least Squares (PLS) [1] is one method of overcoming this problem
by taking account of the class labels when identifying sub-space directions.
Intuitively PLS is a simple extension to PCA: where PCA finds directions of
maximum covariance between the input data and itself, PLS finds directions
of maximum covariance between the input data and the output labels, Y .
Thus, finding the PLS sub-space directions consists of simply finding the largest
eigenvalue and eigenvectors of the covariance matrix XT Y . Unfortunately, this
not as simple as before because the matrix XT Y is not square but d×L, where
L is the number of output dimensions (or the number of categories minus one for
classification problems). Hence, it does not have true eigenvalue/vectors, instead

9



X
X

X

X
X

X
X

X

X

X
X

X
X

O
O

O
O
O

O

O

O
O

O
O

O

O

O

O
O

O
O

O

O
O

D1

D2

Figure 2: Because PCA ignores the class labels it will concentrate on preserving
the large variability along the inter-class boundary (direction D2) and remove
the information perpendicular to the boundary (direction D1) required for
classification.

X
X

X

X
X

X
X

X

X

X
X

X
X

O
O

O
O
O

O

O

O
O

O
O

O

O

O

O
O

O
O

O

O
O

X
X

X

X
X

X
X

X

X

X
X

X
X

O
O

O
O
O

O

O

O
O

O
O

O

O

O

O
O

O
O

O

O
O

X
X

X

X
X

X
X

X

X

X
X

X
X

O
O

O
O
O

O

O

O
O

O
O

O

O

O

O
O

O
O

O

O
O

C1

C2

All−at−once clustering

Per−category clustering

Figure 3: Per-category clustering can preserve discriminative information lost
during all-at-once clustering.

the singular values and associated vectors must be used instead. However, a d×L
matrix only has min(d, L) singular values. To obtain more than this number of
sub-space directions an additional trick of deflating [15, p. 183] the input space
is needed. Deflation is the process of removing an already used feature direction
from the input space so the remaining directions can be re-used to extract more
orthogonal feature directions. Deflation works by noting that the projection of
an input data-point x onto a direction u is given by u(uT x), thus to remove this
direction from the data-set we use, X − u(uT X) = (I − uuT )X . This process
of finding feature directions and deflating can be repeated to find successively
lower covariance directions until all the variance in the input data-set has been
extracted.

3.3 Per-category training

PLS provides a way to take account of the desired outputs to minimise the
amount of discriminative information lost during dimensionality reduction.
However, as shown in Figure 3, this discriminative information may still be
lost if the keypoint generation algorithm ignores the class labels. There do
exist modifications to the k-means and GMM training algorithms which take
account of the desired labels, such as MIM [16] for GMMs or LVQ [8] for k-
means. However, in this work we have simply performed the keypoint generation
independently on a per-category basis, and then combining the resulting
keypoints prior to histogramming. This is not a particularly efficient method of
taking account of discriminative information as much effort can be duplicated
fitting keypoints to non-discriminative parts of the input space. However,
as shown in Figure 3, this should preserve most of the useful discriminative
information, is very simple to implement, and is surprisingly effective.

10



3.4 Experiments

The algorithms presented in this section were tested on the same 7-category
XEROX data-set as used in [4]1. This consists of 1776 images in seven classes:
142 books, 125 bikes, 150 buildings, 201 cars, 792 faces, 216 phones and 150
trees. These images are all of the objects in natural settings and thus (apart
from faces) the objects are in highly variable poses with substantial amounts of
background clutter. As in [4] the local patches in the image were found using
the multi-scale Harris affine detector with default parameters, with SIFTs as
the patch descriptors.

All the results presented report the average overall classification rate (CR),

CR =
# correctly classified images

total # images
, (18)

as obtained by 10-fold cross-validation. The variance of the classification rates
across the folds is also reported in brackets.

3.4.1 Experiment 1: k-means

For comparative purposes we first conducted using the k-means key-point
generation, using the different dimensionality reduction and training methods
presented above. In all cases used a multi-class classifier based upon one-vs-
all trained SVMs. The data was zero meaned and each feature dimension
was normalised to unit variance before SVM training. All the SVMs used a
linear kernel with the optimal penalty parameter C found for each problem
independently (though C=.05 generally gave best results). The results of these
tests are presented in Table 4.

These results clearly show the advantage of preserving discriminative
information during keypoint generation, with per-category training consistently
outperforming all-at-once training, and PLS dimensionality reduction outper-
forming PCA for the same number of reduced dimensions. Indeed, it appears
the feature selection method used in PLS is actually able to remove non-
discriminative noise and actually improve performance. Thus the combination of
per-category training and PLS dimensionality reduction improves classification
performance by over 2% compared to the orginal XEROX results.

Interestingly, unlike what [4] found in their original experiments, increasing
the number of keypoints when using per-category labelling does not appear to
have a significant effect on classification performance

3.4.2 Experiment 2: GMMs

To test the GMMs performance the same experimental methodology was
used with the GMM replacing k-means for keypoint generation, and summed
responsibility replacing bin membership for histogram generation. The GMMs
were all trained with MAP-EM with the training set sample mean and
covariance, used as the same prior for all mixture components. This prior
amounts to the very weak assumption that all the data are generated by the
same Gaussian. As discussed above the prior was weighted differently when
determining the components mean, covariance and weight. After some initial

1Available from the LAVA project web-site http://www.l-a-v-a.org .

11

http://www.l-a-v-a.org


Number of keypoints
Dim Red Trn Type 500 1000
Raw ALL 83.7 (8.7) 85.1 (8.3)

Per-Cat 85.0 (6.9) 84.7 (8.1)
PCA 40d ALL 82.6 (4.3) 82.6 (10.8)

Per-Cat 84.4 (8.7) 83.6 (4.4)
PLS 40d ALL 85.1 (4.9) 85.3 (8.3)

Per-Cat 85.9 (4.7) 85.8 (6.9)
PCA 20d ALL 81.5 (7.8) 83.1 (8.2)

Per-Cat 83.8 (7.1) 83.8 (7.0)
PLS 20d ALL 83.3 (3.3) 84.2 (6.8)

Per-Cat 84.5 (6.5) 85.7 (5.6)

Figure 4: Classification rates for k-means keypoint generation for different
numbers of keypoints (100, 250, 500, 1000), types of dimensionality reduction
(raw, PCA and PLS) for different numbers of reduced dimensions (20 and 40)
and training (per-category or all-at-once). All results reported are averages
across 10-folds with numbers in brackets indicating the variance across the folds.
The numbers in bold face indicated the best performance for a given number of
keypoints. Blanks indicate results not available at press time.

experiments it the best prior weightings were found to be: 0 weight on the
component prior probabilities, 0.1 weight on the means, and 10 weight on the
component covariance matrices. This amounts to a strong restriction on the
Gaussian’s widths, a weak requirement that they be near the data mean, and
no restriction on how many Gaussian’s are required, i.e. have non-zero prior
probability. For per-category training the set of GMMs were combined into one
single GMM by simply combining the set of Gaussians together and dividing
the mixture components prior probability by the number of categories to ensure
they summed to one. The results of these experiments are presented in Table 5.

The results clearly show the superiority of GMM keypoint generation over
k-means, where the best classification performance increases from 85.9% for
kmeans + 1000 keypoints + PLS40 + Per-Cat, to 87.5% for GMM + 250
keypoints + PCA40 + Per-Cat. They also clearly demonstrate the ability of the
GMM to obtain equivalent or better performance with many fewer keypoints
– this is particularly apparent as a GMM with only 14 keypoints performs as

well as the best kmeans keypoint generators with 1000 keypoints! Further the
variance of the GMM results is also lower than kmeans implying they provide
more consistent performance.

The poor performance of the GMMs with the non-dimensionally reduced
input features clearly indicates the problems the GMM experiences in high
dimensional spaces. However, given reducing the dimension with PLS improves
performance even for kmeans this is not a severe problem.

Overall, these results show that the combination of preserving discriminative
information using PLS dimensionality reduction and per-category training with
GMM keypoint generation and summed responsibility based histogramming
gives a further 2% classification performance increase over kmeans and 4%
improvement over the orginal implementation.

12



Number of keypoints
Dim Red Trn Type 14 100 250
Raw ALL 69.8 (12.3)

Per-Cat 81.1 (6.9) 83.0 (6.9) 82.4 (4.1)
PCA 40d ALL 69.2 (14.7) 81.6 (6.2)

Per-Cat 86.0 (4.4) 86.5 (3.3) 87.5 (3.4)
PLS 40d ALL 72.9 (8.8) 84.0 (5.6)

Per-Cat 85.3 (6.5) 87.0 (4.9) 87.1 (6.0)
PCA 20d ALL 68.3 (17.2) 81.6 (7.6) 83.2 (1.8)

Per-Cat 83.0 (16.0) 86.8 (7.8) 87.3 (4.8)
PLS 20d ALL 74.0 (4.4) 82.6 (8.8)

Per-Cat 84.7 (4.7) 86.1 (1.7) 87.2 (5.2)

Figure 5: Classification rates for GMM keypoint generation for different
numbers of keypoints (14, 100, 250), types of dimensionality reduction (raw,
PCA and PLS) for different numbers of reduced dimensions (20 and 40) and
training (per-category or all-at-once). All results reported are averages across
10-folds with numbers in brackets indicating the variance across the folds. The
numbers in bold face indicated the best performance for a given number of
keypoints. Blanks indicate results not available at press time.

4 PDF-kernels

The machine learning techniques discussed so far have all focused on improving
the keypoint generation and histogramming processes to produce better fixed
length histograms to allow a standard SVM with a vector kernel to kernel to
compare sets of vectors and learn a classifier. However, this process is clearly
inefficient as the same set of keypoints must be used for all sets of vectors. A
more desirable alternative would be to use a kernel which can work directly
with the input sets of vectors and avoid keypoint generation completely. There
has been some recent work on defining kernels for sets of vectors, such as the
Matching kernel of [17], or the Convolution Kernel [6], or Kernel Principle Angles
[18].

However, we use take a slightly different approach where we first model each
set of vectors by a probability density function (PDF) and then in the SVM use
a kernel defined over the PDFs. If we view the keypoint and histogramming
techniques developed earlier as simply a method to approximate the set of
vectors PDF then this can be seen as a further enhancement of this approach.
The advantage of modelling each image’s set of descriptors independently are
that each image model is tailored to the specific descriptor set and hence should
be more accurate. Further, we avoid the significant computational cost of
keypoint generation.

As shown in Figure 6 using a PDF kernel consists of two stages, firstly
computing the PDF model of the input set of vectors, and then computing the
kernel matrix over these PDFs. We have used two existing kernel functions
for PDFs, the Kullback-Liebler divergence kernel [12], and the Bhattacharyya
kernel [2].

13



Processing
Image

Test

Training

L
ab

el
s

Machine Learning

Images

Dataset

Extraction

(SIFT)

Feature
Image

C
la

ss
if

ic
at

io
n

C
om

pu
ta

tio
n

PD
F

Classifier
Learning

(SVM)

K
er

ne
l

C
om

pu
ta

tio
n

PD
Fs

de
sc

ri
pt

or
s

K
er

ne
l

C
la

ss
if

ie
r

Se
t o

f S
IF

T

Figure 6: The PDF-kernel image categorisation approach as developed here.

4.1 The KL Divergence kernel

A common measure of the distance between two PDFs is the Kullback-Liebler
(KL) divergence or relative entropy between the distributions, defined as,

D(P1||P2) =

∫

∞

−∞

P1(x) log
P1(x)

P2(x)
dx = EP1

{

log
P1(x)

P2(x)

}

. (19)

Unfortunately, this measure cannot be used as a kernel, firstly because it is
not symmetric and secondly because it is not a valid inner product. The first
problem can be easily overcome using the symmetric KL divergence,

KL(P1(x), P2(x)) =

∫

∞

−∞

P1(x) log

(

P1(x)

P2(x)

)

dx +

∫

∞

−∞

P2(x) log

(

P2(x)

P1(x)

)

dx.

The second problem is harder to overcome as it is unclear how to turn the KL
measure of dissimilarity into an inner product measure of similarity. Following,
[12], we have used the simple trick of computing the negative exponential of the
KL divergence, and treating this as a kernel,

KKL(P1(x), P2(x)) = exp{−αKL(P1(x), P1(x))}.

The parameter α is included for numerical stability reasons and set to 0.04 in
the work presented here.

Whilst this trick does transform the symmetric KL divergence from a
measure of dissimilarity to similarity it is unclear whether it represents a valid
kernel. For this reason, from a theoretical point of view it is not safe to use this
as a kernel function. However, practically, so long as the final kernel matrix is
positive definite, it may still provide good performance.

4.2 Bhattacharyya kernel

An alternative measure of the similarity between two PDFs is the Bhattacharyya
affinity [2], defined as,

Kbat(P1(x), P2(x)) =

∫

∞

−∞

√

P1(x)P2(x)dx.

This is clearly an inner product and hence a valid kernel function. This kernel
was introduced in [9] an generalised in [7] by replacing the square root by any
other positive power of the inner product terms, P1(x)P2(x). In this work
however we have only reported results for the kernel as defined above.

14



4.3 PDF computation

Before using these kernel functions we need to compute a PDF approximation
for the input set of vectors. Clearly a PDF consisting of an impulse on each
data-point is of little use as the similarities computed will only be non-zero if
exactly the same point occurs in each set. Thus, to be robust to noise in the
input features, we would like these PDFs need to be appropriately regularised.
There exist many ways of computing a regularised PDF from a set of examples,
such as Parzen windows [3, p. 177] or Support vector based density estimation.
However, in this work we have simply used a MAP-EM trained GMM, with
priors determined from the full training set mean and covariance as before.

We have also only used a single Gaussian to model each input feature set
because in this case there are simple analytic solutions for the symmetric KL
divergence and the Bhattacharyya kernel:

KL(N (x|µ1, Σ1),N (x|µ2, Σ2)) = tr(Σ1Σ
−1
2 ) + tr(Σ2Σ

−1
1 ) − 2d

+tr((Σ−1
1 + Σ−1

2 )(µ1 − µ)2)
T (µ1 − µ2)) (20)

Kbat(N (x|µ1, Σ1),N (x|µ2, Σ2)) = 0.5
d

2 [Σ+]−
1

2 Σ
−

1

4

1 Σ
−

1

4

2 ∗

exp

[

−
1

4
[µT

1 Σ−1
1 µ1 + µT

2 Σ−1
2 µ2 − µT

+Σ−1
+ µ+

]

(21)

where, Σ+ = (Σ−1
1 + Σ−1

2 )−1 and µ+ = Σ−1
1 µ1 + Σ−1

2 µ2, and tr represents the
trace of the matrix.

4.4 Experiment 3: PDF Kernels

We tested the PDF Kernels on the same data-set as used above, simply replacing
the keypoint generation and histogramming by per-image PDF generation and
kernel computation. The computed kernel was then used directly in the SVM,
the optimal penalty was found to be about 10. For the prior weights in PDF
computation we again used Wp, Wµ, WΣ = (0, 0.1, 10) as this was found to give
consistently good results. As we are fitting Gaussians to the data we have also
used the dimensionality reduction techniques to avoid the problems of high-
dimensional spaces noted above. The results of these experiments are presented
in Table 7.

These results clearly show the advantage of using PDF kernels over the
keypoint generation technique used previously, where the best performance
increases by a further 2% over GMM and a significant 8% with respect to
the original approach. There is clearly a problem with this approach for high
dimensional spaces where performance significantly deceases in the original
input space.

5 Conclusions

In this paper we have investigated enhancements to the LAVA “bag-of-
keypoints” image categorisation techniques. It was noted that the variable
length nature of the set-of-vectors image representation poses significant
problems for traditional machine learning techniques. Developing fixed length
approximations for the set, such as LAVA’s keypoint histograms one way round

15



Kernel type
Dim Red KKL KPP

Raw 85.63 (0.93) 57.1 (1.5)
PCA 40d 89.91 (1.67) 89.0 (1.1)
PLS 40d – 91.7 (3.9)
PCA 20d 88.32 (1.5) 90.41 (0.76)
PLS 20d – 91.3 (3.2)

Figure 7: Classification rates for PDF kernel based classification for different
kernel types (KL divergence kernel and Bhattacharyya), types of dimensionality
reduction (raw, PCA and PLS) for different numbers of reduced dimensions (20
and 40). All results reported are averages across 10-folds with numbers in
brackets indicating the variance across the folds. The numbers in bold face
indicated the best performance for a given kernel type.

this problem. Developing special purpose kernels for set-of-vectors inputs is
another. In this work we have investigated both.

Firstly, we investigated ways of improving the fixed length keypoint
histograms using per-category training and PLS as ways of preserving dis-
criminative information in keypoint generation, and GMMs to increase the
representational power of the generated keypoints. In combination these
techniques were found to improve overall classification rates from ≈ 83% to
≈ 88%, reducing error rates by about a quarter.

We then investigated two special purposed for set-of-vectors inputs based
upon first approximating the set by a PDF and then computing a kernel between
these functions. When used with PLS to reduce dimensionality and prevent
over-fitting problems this was found to improve classification results further to
≈ 91% representating a reduction in classification error by of almost half from
16.4% to 8.3%.

References

[1] M. Barker and W. Rayens. Partial least squares for discrimination. Journal

of Chemometrics, 17:166–173, 2003.

[2] A. Bhattacharyya. On a measure of the divergence between two statistical
populations defined by their probability distributions. Bull. Calcutta Math

Soc., 35:99–110, 1943.

[3] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, 1995.

[4] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags
of keypoints. In XRCE Research Reports, XEROX. The 8th European
Conference on Computer Vision - ECCV, Prague, 2004.

[5] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale invarient learning. In ECCV 2002, 2002.

[6] D. Haussler. Convolution kernels on discrete structures. Technical report,
University of California at Santa Cruz, 1999.

16



[7] T. Jebra, R. Kondor, and A. Howard. Probability product kernels. Journal

of Machine Learning Research, 5:819–844, 2004.

[8] T. Kohonen. Self-Orginising Maps. Springer, 1995.

[9] R. Kondor and T. Jebara. A kernel between sets of vectors. Proceedings of

the ICML, 2003.

[10] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
Internation Journal of computer Vision, 60(2):91–110, 2004.

[11] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. In IEEE Conference on Computer vision and Pattern

Recognition, June 2003.

[12] P. J. Moreno, P. P. Ho, and N. Vasconcelos. A kullback-leibler divergence
based kernel for svm classification in multimedia applications. In Neural

Information Processing Systems, 2004.

[13] D. Ormoneit and V. Tresp. Averaging, maximum likelihood and bayesian
estimation for improving gaussian mixture probability density estimates.
IEEE Trans. on Neural Networks, 9(4), 1998.

[14] C. Schmid and R. Mohr. Local greyvalue invariants from image retrieval.
IEEE. Trans. on Pattern Analysis and Machine Intelligence, 19(5):530–
534, 1997.

[15] J Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[16] K. Torkkola. On feature extraction by mutual information maximization.
In Proceedings of IEEE International Conference on Acoustics, Speech, and

Signal Processing, volume 1, pages 821–824, 2002.

[17] C. Wallraven, B. Caputo, and A.B.A. Graf. Recognition with local features:
the kernel recipe. In Proceedings of ICCV 2003, volume 2, pages 257–264,
2003.

[18] L. Wolf and A. Shashua. Learning over sets using kernel principle angles.
Journal of Machine Learning Research, pages 913–931, 2003.

17


	Introduction
	The ``bag-of-keypoints'' approach
	Local image feature extraction
	Key-point identification and histogramming
	Classifier Learning


	Improving ``bag-of-keypoints''
	Gaussian Mixture Models
	Regularisation -- MAP-EM
	Prior determination

	Dimensionality Reduction
	Principle Components Analysis
	Partial Least Squares

	Per-category training
	Experiments
	Experiment 1: k-means
	Experiment 2: GMMs


	PDF-kernels
	The KL Divergence kernel
	Bhattacharyya kernel
	PDF computation
	Experiment 3: PDF Kernels

	Conclusions

