12,678 research outputs found

    Network Inference via the Time-Varying Graphical Lasso

    Full text link
    Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability

    Hydrogen atom in phase space. The Kirkwood-Rihaczek representation

    Get PDF
    We present a phase-space representation of the hydrogen atom using the Kirkwood-Rikaczek distribution function. This distribution allows us to obtain analytical results, which is quite unique because an exact analytical form of the Wigner functions corresponding to the atom states is not known. We show how the Kirkwood-Rihaczek distribution reflects properties of the hydrogen atom wave functions in position and momentum representations.Comment: 5 pages (and 5 figures

    Formal Analysis of V2X Revocation Protocols

    Get PDF
    Research on vehicular networking (V2X) security has produced a range of security mechanisms and protocols tailored for this domain, addressing both security and privacy. Typically, the security analysis of these proposals has largely been informal. However, formal analysis can be used to expose flaws and ultimately provide a higher level of assurance in the protocols. This paper focusses on the formal analysis of a particular element of security mechanisms for V2X found in many proposals: the revocation of malicious or misbehaving vehicles from the V2X system by invalidating their credentials. This revocation needs to be performed in an unlinkable way for vehicle privacy even in the context of vehicles regularly changing their pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and RTOKEN aim to solve this challenge by means of cryptographic solutions and trusted hardware. Formal analysis using the TAMARIN prover identifies two flaws with some of the functional correctness and authentication properties in these schemes. We then propose Obscure Token (OTOKEN), an extension of REWIRE to enable revocation in a privacy preserving manner. Our approach addresses the functional and authentication properties by introducing an additional key-pair, which offers a stronger and verifiable guarantee of successful revocation of vehicles without resolving the long-term identity. Moreover OTOKEN is the first V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure

    Nonflammable, antistatic, and heat-sealable film

    Get PDF
    Antistatic, heat-sealable, nonflammable films prepared from polyvinylidene fluoride and polyvinylidene chloride resin

    Surgery and the Spectrum of the Dirac Operator

    Full text link
    We show that for generic Riemannian metrics on a simply-connected closed spin manifold of dimension at least 5 the dimension of the space of harmonic spinors is no larger than it must be by the index theorem. The same result holds for periodic fundamental groups of odd order. The proof is based on a surgery theorem for the Dirac spectrum which says that if one performs surgery of codimension at least 3 on a closed Riemannian spin manifold, then the Dirac spectrum changes arbitrarily little provided the metric on the manifold after surgery is chosen properly.Comment: 23 pages, 4 figures, to appear in J. Reine Angew. Mat

    Several types of types in programming languages

    Get PDF
    Types are an important part of any modern programming language, but we often forget that the concept of type we understand nowadays is not the same it was perceived in the sixties. Moreover, we conflate the concept of "type" in programming languages with the concept of the same name in mathematical logic, an identification that is only the result of the convergence of two different paths, which started apart with different aims. The paper will present several remarks (some historical, some of more conceptual character) on the subject, as a basis for a further investigation. The thesis we will argue is that there are three different characters at play in programming languages, all of them now called types: the technical concept used in language design to guide implementation; the general abstraction mechanism used as a modelling tool; the classifying tool inherited from mathematical logic. We will suggest three possible dates ad quem for their presence in the programming language literature, suggesting that the emergence of the concept of type in computer science is relatively independent from the logical tradition, until the Curry-Howard isomorphism will make an explicit bridge between them.Comment: History and Philosophy of Computing, HAPOC 2015. To appear in LNC

    Segregation, precipitation, and \alpha-\alpha' phase separation in Fe-Cr alloys: a multi-scale modelling approach

    Full text link
    Segregation, precipitation, and phase separation in Fe-Cr systems is investigated. Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy are used. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods has to be used. Using Exact Muffin-Tin Orbitals method the effective chemical potential as a function of Cr content (0-15 at.% Cr) is calculated for a surface, second atomic layer and bulk. At ~10 at.% Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr containing surfaces are expected when the Cr content exceeds ~10 at.%. The second atomic layer forms about 0.3 eV barrier for the migration of Cr atoms between bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. Using combined Monte Carlo molecular dynamics simulations, based on semiempirical potential, the precipitation of Cr into isolated pockets in bulk Fe-Cr and the upper limit of the solubility of Cr into Fe layers in Fe/Cr layer system is studied. The theoretical predictions are tested using spectroscopic measurements. Hard X-ray photoelectron spectroscopy and Auger electron spectroscopy investigations were carried out to explore Cr segregation and precipitation in Fe/Cr double layer and Fe_0.95Cr_0.05 and Fe_0.85Cr_0.15 alloys. Initial oxidation of Fe-Cr was investigated experimentally at 10^-8 Torr pressure of the spectrometers showing intense Cr_2O_3 signal. Cr segregation and the formation of Cr rich precipitates were traced by analysing the experimental spectral intensities with respect to annealing time, Cr content, and kinetic energy of the exited electron.Comment: 16 pages, 14 figures, 52 reference

    The Aqueous Phase Yield Of Alkyl Nitrates From Roo+No: Implications For Photochemical Production In Seawater

    Get PDF
    Alkyl nitrates have been observed in remote oceanic regions of the troposphere and in the surface ocean. The mechanism for their production in the oceans is not known. A likely source is the reaction of ROO + NO (where R is an alkyl group). Steady-state laboratory experiments show that alkyl nitrates are produced in the aqueous phase via this reaction, with branching ratios of 0.23 +/- 0.04, 0.67 +/- 0.03, and 0.71 +/- 0.04 for methyl, ethyl, and propyl nitrate respectively. The branching ratios in aqueous solution are significantly higher than in the gas phase. Irradiation of surface seawaters yield rates of alkyl nitrate production on the order of 10(-18) mol cm(-3) s(-1), suggesting that the reaction of ROO and NO is an important source of alkyl nitrates in seawater
    corecore