158 research outputs found

    In vitro comparison of the effects of rough and polished stem surface finish on pressure generation in cemented hip arthroplasty

    Get PDF
    Background and purpose High pressures around implants can cause bone lysis and loosening. We investigated how pressures are generated around cemented femoral stems

    In vitro influence of stem surface finish and mantle conformity on pressure generation in cemented hip arthroplasty

    Get PDF
    Background and purpose Under physiological loads, debonded cemented femoral stems have been shown to move within their cement mantle and generate a fluid pump that may facilitate peri-prosthetic osteolysis by pressurizing fluid and circulating wear debris. The long-term physiological loading of rough and polished tapered stems in vitro has shown differences in performance, with greater interface pressures generated by the rough stems. In this study we investigated the individual effects of stem surface finish, degree of mantle wear, and mode of loading on the stem pump mechanism

    Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions

    Get PDF
    Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion

    Urbanization in Iron Age Europe:Trajectories, patterns, and social dynamics

    Get PDF

    Biochemical Properties of Highly Neuroinvasive Prion Strains

    Get PDF
    Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrPSc. Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrPSc over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrPSc over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS

    HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier?

    Get PDF
    The acquired immunodeficiency syndrome (AIDS) is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis
    corecore