428 research outputs found

    Order statistics and the linear assignment problem

    Get PDF
    Under mild conditions on the distribution functionF, we analyze the asymptotic behavior in expectation of the smallest order statistic, both for the case thatF is defined on (–, +) and for the case thatF is defined on (0, ). These results yield asymptotic estimates of the expected optiml value of the linear assignment problem under the assumption that the cost coefficients are independent random variables with distribution functionF

    Theory of the Eigler-swith

    Full text link
    We suggest a simple model to describe the reversible field-induced transfer of a single Xe-atom in a scanning tunneling microscope, --- the Eigler-switch. The inelasticly tunneling electrons give rise to fluctuating forces on and damping of the Xe-atom resulting in an effective current dependent temperature. The rate of transfer is controlled by the well-known Arrhenius law with this effective temperature. The directionality of atom transfer is discussed, and the importance of use of non-equlibrium-formalism for the electronic environment is emphasized. The theory constitutes a formal derivation and generalization of the so-called Desorption Induced by Multiple Electron Transitions (DIMET) point of view.Comment: 13 pages (including 2 figures in separate LaTeX-files with ps-\specials), REVTEX 3.

    Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems

    Full text link
    Confined quantum systems involving NN identical interacting particles are to be found in many areas of physics, including condensed matter, atomic and chemical physics. A beyond-mean-field perturbation method that is applicable, in principle, to weakly, intermediate, and strongly-interacting systems has been set forth by the authors in a previous series of papers. Dimensional perturbation theory was used, and in conjunction with group theory, an analytic beyond-mean-field correlated wave function at lowest order for a system under spherical confinement with a general two-body interaction was derived. In the present paper, we use this analytic wave function to derive the corresponding lowest-order, analytic density profile and apply it to the example of a Bose-Einstein condensate.Comment: 15 pages, 2 figures, accepted by Physics Review A. This document was submitted after responding to a reviewer's comment

    Relation between inelastic electron tunneling and vibrational excitation of single adsorbates on metal surfaces

    Full text link
    We analyse theoretically a relation between the vibrational generation rate of a single adsorbate by tunneling electrons and the inelastic tunneling (IET) current in scanning tunneling microscope, and the influence of the vibrational excitations on the rate of adsorbate motions. Special attention is paid to the effects of finite lifetime of the vibrational excitations. We show that in the vicinity and below the IET threshold the rate of adsorbate motion deviates from a simple power-law dependence on the bias voltage due to the effects of bath temperature and adsorbate vibrational lifetime broadenings. The temperature broadening appears to be confined near the threshold voltage within a narrow region of several kBTk_B T, whereas the lifetime broadening manifests itself in a much wider region of applied voltages below the IET threshold.Comment: 8 pages including 4 figure

    Calpain-specific breakdown fragment in human drusen

    Get PDF
    Purpose. With aging and age-related macular dystrophy (AMD), proteolytic fragments are deposited in extracellular drusen located between the RPE and Bruch’s membrane. Localized hypoxia may be a risk factor for AMD. Our hypothesis is that following hypoxia, activation of proteolytic enzymes called calpains may cause proteolysis/degeneration of retinal cells and RPE. No direct evidence has yet demonstrated activation of calpains in AMD. The purpose of the present study was to identify calpain-cleaved proteins in drusen. Methods. Seventy-six (76) drusen were analyzed in human eye sections from six normal and twelve AMD human donor eyes. The sections were subjected to immunofluorescence for the calpain-specific 150 kDa breakdown product from α-spectrin, SBDP150-a marker for calpain activation, and for recoverin-a marker for photoreceptor cells. Results. Among 29 nodular drusen, 80% from normal eyes and 90% from AMD eyes stained positive for SBDP150. Among 47 soft drusen, mostly from AMD eyes, 72% stained positive for SBDP150. Thus, the majority of both soft and nodular drusen from AMD donors contained SBDP150. Conclusions. SBDP150 was detected for the first time in soft and nodular drusen from human donors. Our results suggest that calpain-induced proteolysis participates in the degeneration of photoreceptors and/or RPE cells during aging and AMD. Calpain inhibitors may ameliorate AMD progressio

    Testing of quantum phase in matter wave optics

    Full text link
    Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example the discrete Fourier estimation that actually coincides with the operational phase of Noh, Fouge`res and Mandel is obtained for continuous Gaussian signals with phase modulated mean.Since signals in quantum theory are discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory approximation for fitting the phase distribution of almost any state the optimal phase estimation offers in certain cases a measurable better performance. This has been demonstrated in neutron--optical experiment.Comment: 8 pages, 4 figure

    STM induced hydrogen desorption via a hole resonance

    Get PDF
    We report STM-induced desorption of H from Si(100)-H(2×1\times1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes with the Si-H 5σ\sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum fraction of inelastically scattered electrons at the onset of the field emission regime.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let

    Surface Screening Charge and Effective Charge

    Full text link
    The charge on an atom at a metallic surface in an electric field is defined as the field-derivative of the force on the atom, and this is consistent with definitions of effective charge and screening charge. This charge can be found from the shift in the potential outside the surface when the atoms are moved. This is used to study forces and screening on surface atoms of Ag(001) c(2×2)(2\times 2) -- Xe as a function of external field. It is found that at low positive (outward) fields, the Xe with a negative effective charge of -0.093 e|{e}| is pushed into the surface. At a field of 2.3 V \AA1^{-1} the charge changes sign, and for fields greater than 4.1 V \AA1^{-1} the Xe experiences an outward force. Field desorption and the Eigler switch are discussed in terms of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL

    Atomic Tunneling from a STM/AFM tip: Dissipative Quantum Effects from Phonons

    Full text link
    We study the effects of phonons on the tunneling of an atom between two surfaces. In contrast to an atom tunneling in the bulk, the phonons couple very strongly, and qualitatively change the tunneling behavior. This is the first example of {\it ohmic} coupling from phonons for a two-state system. We propose an experiment in which an atom tunnels from the tip of an STM, and show how its behavior would be similar to the Macroscopic Quantum Coherence behavior predicted for SQUIDS. The ability to tune and calculate many parameters would lead to detailed tests of the standard theories. (For a general intro to this work on the on the World-Wide-Web: http://www.lassp.cornell.edu. Click on ``Entertaining Science Done Here'' and ``Quantum Tunneling of Atoms'')Comment: 12 pages, ReVTex3.0, two figures (postscript). This is a (substantially) revised version of cond-mat/9406043. More info (+ postscript text) at : http://www.lassp.cornell.edu/ardlouis/publications.htm

    Mapping the unconventional orbital texture in topological crystalline insulators

    Get PDF
    The newly discovered topological crystalline insulators (TCIs) harbor a complex band structure involving multiple Dirac cones. These materials are potentially highly tunable by external electric field, temperature or strain and could find future applications in field-effect transistors, photodetectors, and nano-mechanical systems. Theoretically, it has been predicted that different Dirac cones, offset in energy and momentum-space, might harbor vastly different orbital character, a unique property which if experimentally realized, would present an ideal platform for accomplishing new spintronic devices. However, the orbital texture of the Dirac cones, which is of immense importance in determining a variety of materials properties, still remains elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI Pb1x_{1-x}Snx_xSe. By using Fourier-transform (FT) scanning tunneling spectroscopy (STS) we measure the interference patterns produced by the scattering of surface state electrons. We discover that the intensity and energy dependences of FTs show distinct characteristics, which can directly be attributed to orbital effects. Our experiments reveal the complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands in this new class of topological materials, which could provide a different pathway towards future quantum applications
    corecore