118 research outputs found

    Efficient Implementation and the Product State Representation of Numbers

    Full text link
    The relation between the requirement of efficient implementability and the product state representation of numbers is examined. Numbers are defined to be any model of the axioms of number theory or arithmetic. Efficient implementability (EI) means that the basic arithmetic operations are physically implementable and the space-time and thermodynamic resources needed to carry out the implementations are polynomial in the range of numbers considered. Different models of numbers are described to show the independence of both EI and the product state representation from the axioms. The relation between EI and the product state representation is examined. It is seen that the condition of a product state representation does not imply EI. Arguments used to refute the converse implication, EI implies a product state representation, seem reasonable; but they are not conclusive. Thus this implication remains an open question.Comment: Paragraph in page proof for Phys. Rev. A revise

    Hybrid Rules with Well-Founded Semantics

    Get PDF
    A general framework is proposed for integration of rules and external first order theories. It is based on the well-founded semantics of normal logic programs and inspired by ideas of Constraint Logic Programming (CLP) and constructive negation for logic programs. Hybrid rules are normal clauses extended with constraints in the bodies; constraints are certain formulae in the language of the external theory. A hybrid program is a pair of a set of hybrid rules and an external theory. Instances of the framework are obtained by specifying the class of external theories, and the class of constraints. An example instance is integration of (non-disjunctive) Datalog with ontologies formalized as description logics. The paper defines a declarative semantics of hybrid programs and a goal-driven formal operational semantics. The latter can be seen as a generalization of SLS-resolution. It provides a basis for hybrid implementations combining Prolog with constraint solvers. Soundness of the operational semantics is proven. Sufficient conditions for decidability of the declarative semantics, and for completeness of the operational semantics are given

    The Representation of Natural Numbers in Quantum Mechanics

    Full text link
    This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This work is limited to k-ary representations of length L and to the axioms for arithmetic modulo k^{L}. A model of the axioms is described based on states in and operators on an abstract L fold tensor product Hilbert space H^{arith}. Unitary maps of this space onto a physical parameter based product space H^{phy} are then described. Each of these maps makes states in H^{phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's Algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This conditions states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.Comment: Much rewrite, including response to comments. To Appear in Phys. Rev.

    On Relating Theories: Proof-Theoretical Reduction

    Get PDF
    The notion of proof-theoretical or finitistic reduction of one theory to another has a long tradition. Feferman and Sieg (Buchholz et al., Iterated inductive definitions and subsystems of analysis. Springer, Berlin, 1981, Chap. 1) and Feferman in (J Symbol Logic 53:364–384, 1988) made first steps to delineate it in more formal terms. The first goal of this paper is to corroborate their view that this notion has the greatest explanatory reach and is superior to others, especially in the context of foundational theories, i.e., theories devised for the purpose of formalizing and presenting various chunks of mathematics. A second goal is to address a certain puzzlement that was expressed in Feferman’s title of his Clermont-Ferrand lectures at the Logic Colloquium 1994: “How is it that finitary proof theory became infinitary?” Hilbert’s aim was to use proof theory as a tool in his finitary consistency program to eliminate the actual infinite in mathematics from proofs of real statements. Beginning in the 1950s, however, proof theory began to employ infinitary methods. Infinitary rules and concepts, such as ordinals, entered the stage. In general, the more that such infinitary methods were employed, the farther did proof theory depart from its initial aims and methods, and the closer did it come instead to ongoing developments in recursion theory, particularly as generalized to admissible sets; in both one makes use of analogues of regular cardinals, as well as “large” cardinals (inaccessible, Mahlo, etc.). (Feferman 1994). The current paper aims to explain how these infinitary tools, despite appearances to the contrary, can be formalized in an intuitionistic theory that is finitistically reducible to (actually Π02 -conservative over) intuitionistic first order arithmetic, also known as Heyting arithmetic. Thus we have a beautiful example of Hilbert’s program at work, exemplifying the Hilbertian goal of moving from the ideal to the real by eliminating ideal elements
    • 

    corecore