1,096 research outputs found

    Disentangling the excitation conditions of the dense gas in M17 SW

    Get PDF
    We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO+^+ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the J=16−15J=16-15, J=12−11J=12-11, and J=11−10J=11-10 transitions of 12^{12}CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-JJ CO, HCN and HCO+^+ emission lines, including maps of the HCN J=8−7J=8-7 and HCO+^+ J=9−8J=9-8 transitions. The excitation conditions of 12^{12}CO, HCO+^+ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO+^+ molecules toward M17 SW. The LSED shape, particularly the high-JJ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions. The critical magnetic field criterion implies that the cold cloudlets at two positions are partially controlled by processes that create and dissipate internal motions. Supersonic but sub-Alfv\'enic velocities in the cold component at most selected positions indicates that internal motions are likely MHD waves. Magnetic pressure dominates thermal pressure in both gas components at all selected positions, assuming random orientation of the magnetic field. The magnetic pressure of a constant magnetic field throughout all the gas phases can support the total internal pressure of the cold components, but it cannot support the internal pressure of the warm components. If the magnetic field scales as B∝n2/3B \propto n^{2/3}, then the evolution of the cold cloudlets at two selected positions, and the warm cloudlets at all selected positions, will be determined by ambipolar diffusion.Comment: 26 pages, 13 figures, A&A accepte

    Abundant Z-cyanomethanimine in the interstellar medium: paving the way to the synthesis of adenine

    Full text link
    We report the first detection in the interstellar medium of the Z-isomer of cyanomethanimine (HNCHCN), an HCN dimer proposed as precursor of adenine. We identified six transitions of Z-cyanomethanimine, along with five transitions of E-cyanomethanimine, using IRAM 30m observations towards the Galactic Center quiescent molecular cloud G+0.693. The Z-isomer has a column density of (2.0±\pm0.6)×\times1014^{14} cm−2^{-2} and an abundance of 1.5×\times10−9^{-9}. The relative abundance ratio between the isomers is [Z/E]∌\sim6. This value cannot be explained by the two chemical formation routes previously proposed (gas-phase and grain surface), which predicts abundances ratios between 0.9 and 1.5. The observed [Z/E] ratio is in good agreement with thermodynamic equilibrium at the gas kinetic temperature (130−-210 K). Since isomerization is not possible in the ISM, the two species may be formed at high temperature. New chemical models, including surface chemistry on dust grains and gas-phase reactions, should be explored to explain our findings. Whatever the formation mechanism, the high abundance of Z-HNCHCN shows that precursors of adenine are efficiently formed in the ISM.Comment: Accepted in Monthly Notices of the Royal Astronomical Society Letter

    The thermal state of molecular clouds in the Galactic Center: evidence for non-photon-driven heating

    Get PDF
    We used the Atacama Pathfinder Experiment (APEX) 12 m telescope to observe the J_KaKc=3_03-2_02, 3_22-2_21, and 3_21-2_20 transitions of para-H_2CO at 218 GHz simultaneously to determine kinetic temperatures of the dense gas in the central molecular zone (CMZ) of our Galaxy. The map extends over approximately 40 arcmin x 8 arcmin (~100x20 pc^2) along the Galactic plane with a linear resolution of 1.2 pc. The strongest of the three lines, the H_2CO (3_03-2_02) transition, is found to be widespread, and its emission shows a spatial distribution similar to ammonia. The relative abundance of para-H_2CO is 0.5-1.2 10^{-9}, which is consistent with results from lower frequency H_2CO absorption lines. Derived gas kinetic temperatures for individual molecular clouds range from 50 K to values in excess of 100 K. While a systematic trend toward (decreasing) kinetic temperature versus (increasing) angular distance from the Galactic center (GC) is not found, the clouds with highest temperature (T_kin > 100 K) are all located near the nucleus. For the molecular gas outside the dense clouds, the average kinetic temperature is 65+/-10 K. The high temperatures of molecular clouds on large scales in the GC region may be driven by turbulent energy dissipation and/or cosmic-rays instead of photons. Such a non-photon-driven thermal state of the molecular gas provides an excellent template for the more distant vigorous starbursts found in ultraluminous infrared galaxies (ULIRGs).Comment: 23 pages, 11 figures, A&A in pres

    Complex organic molecules in the Galactic Centre: the N-bearing family

    Full text link
    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 \, telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2_2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.Comment: 24 pages, 23 figures, 7 tables, accepted for publication in MNRA

    Radiative and mechanical feedback into the molecular gas of NGC 253

    Get PDF
    Starburst galaxies are undergoing intense periods of star formation. Understanding the heating and cooling mechanisms in these galaxies can give us insight to the driving mechanisms that fuel the starburst. Molecular emission lines play a crucial role in the cooling of the excited gas. With SPIRE on the Herschel Space Observatory we have observed the rich molecular spectrum towards the central region of NGC 253. CO transitions from J=4-3 to 13-12 are observed and together with low-J line fluxes from ground based observations, these lines trace the excitation of CO. By studying the CO excitation ladder and comparing the intensities to models, we investigate whether the gas is excited by UV radiation, X-rays, cosmic rays, or turbulent heating. Comparing the 12^{12}CO and 13^{13}CO observations to large velocity gradient models and PDR models we find three main ISM phases. We estimate the density, temperature,and masses of these ISM phases. By adding 13^{13}CO, HCN, and HNC line intensities, we are able to constrain these degeneracies and determine the heating sources. The first ISM phase responsible for the low-J CO lines is excited by PDRs, but the second and third phases, responsible for the mid to high-J CO transitions, require an additional heating source. We find three possible combinations of models that can reproduce our observed molecular emission. Although we cannot determine which of these are preferable, we can conclude that mechanical heating is necessary to reproduce the observed molecular emission and cosmic ray heating is a negligible heating source. We then estimate the mass of each ISM phase; 6×1076\times 10^7 M⊙_\odot for phase 1 (low-J CO lines), 3×1073\times 10^7 M⊙_\odot for phase 2 (mid-J CO lines), and 9×1069\times 10^6 M⊙_\odot for phase 3 (high-J CO lines) for a total system mass of 1×1081\times10^{8} M⊙_\odot

    The largest oxigen bearing organic molecule repository

    Full text link
    We present the first detection of complex aldehydes and isomers in three typical molecular clouds located within 200pc of the center of our Galaxy. We find very large abundances of these complex organic molecules (COMs) in the central molecular zone (CMZ), which we attribute to the ejection of COMs from grain mantles by shocks. The relative abundances of the different COMs with respect to that of CH3OH are strikingly similar for the three sources, located in very different environments in the CMZ. The similar relative abundances point toward a unique grain mantle composition in the CMZ. Studying the Galactic center clouds and objects in the Galactic disk having large abundances of COMs, we find that more saturated molecules are more abundant than the non-saturated ones. We also find differences between the relative abundance between COMs in the CMZ and the Galactic disk, suggesting different chemical histories of the grain mantles between the two regions in the Galaxy for the complex aldehydes. Different possibilities for the grain chemistry on the icy mantles in the GC clouds are briefly discussed. Cosmic rays can play an important role in the grain chemistry. With these new detections, the molecular clouds in the Galactic center appear to be one of the best laboratories for studying the formation of COMs in the Galaxy.Comment: 20 pages, 4 figures, accepted in Ap

    Tracing shocks and photodissociation in the Galactic center region

    Full text link
    We present a systematic study of the HNCO, C18O, 13CS, and C34S emission towards 13 selected molecular clouds in the Galactic center region. The molecular emission in these positions are used as templates of the different physical and chemical processes claimed to be dominant in the circumnuclear molecular gas of galaxies. The relative abundance of HNCO shows a variation of more than a factor of 20 amo ng the observed sources. The HNCO/13CS abundance ratio is highly contrasted (up to a factor of 30) between the shielded molecular clouds mostly affected by shocks, where HNCO is released to gas-phase from grain mantles, and those pervaded by an intense UV radiation field, where HNCO is photo-dissociated and CS production favored via ion reactions. We propose the relative HNCO to CS abundance ratio as a highly contrasted diagnostic tool to distinguish between the influence of shocks and/or the radiation field in the nuclear regions of galaxies and their relation to the evolutionary state of their nuclear star formation bursts.Comment: 25 pages, 5 figures, Accepted for publication in Ap

    Chemical Features in the Circumnuclear Disk of the Galactic Center

    Get PDF
    The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interaction with UV-photons, cosmic-rays, X-rays, and shock waves. We aim to constrain the physical conditions present in the CND by chemical modeling of observed molecular species detected towards it. We analyzed a selected set of molecular line data taken toward a position in the southwest lobe of the CND with the IRAM 30m and APEX 12-meter telescopes and derived the column density of each molecule using a large velocity gradient (LVG) analysis. The determined chemical composition is compared with a time-dependent gas-grain chemical model based on the UCL\_CHEM code that includes the effects of shock waves with varying physical parameters. Molecules such as CO, HCN, HCO+^+, HNC, CS, SO, SiO, NO, CN, H2_2CO, HC3_3N, N2_2H+^+ and H3_3O+^+ are detected and their column densities are obtained. Total hydrogen densities obtained from LVG analysis range between 2×1042 \times 10^4 and 1×106 1 \times 10^6\,cm−3^{-3} and most species indicate values around several ×105 \times 10^5\,cm−3^{-3}, which are lower than values corresponding to the Roche limit, which shows that the CND is tidally unstable. The chemical models show good agreement with the observations in cases where the density is ∌104 \sim10^4\,cm−3^{-3}, the cosmic-ray ionization rate is high, >10−15 >10^{-15} \,s−1^{-1}, or shocks with velocities >40 > 40\,km s−1^{-1} have occurred. Comparison of models and observations favors a scenario where the cosmic-ray ionization rate in the CND is high, but precise effects of other factors such as shocks, density structures, UV-photons and X-rays from the Sgr A* must be examined with higher spatial resolution data.Comment: 17 Pages, 13 figures, accepted for publication in A&

    HIFI Spectroscopy of H2O{\rm H_2O} submm Lines in Nuclei of Actively Star Forming Galaxies

    Get PDF
    We present a systematic survey of multiple velocity-resolved H2_2O spectra using Herschel/HIFI towards nine nearby actively star forming galaxies. The ground-state and low-excitation lines (Eup ≀130 K_{\rm up}\,\le 130\,{\rm K}) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≀ Eup ≀ 350 K130\,{\rm K}\, \le\, E_{\rm up}\,\le\,350\,{\rm K}) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2_2O data using a state-of-the-art 3D radiative transfer code which includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust- and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: A warm (Tdust ∌ 40−70 KT_{\rm dust}\,\sim\,40-70\,{\rm K}), dense (n(H) ∌ 105−106 cm−3n({\rm H})\,\sim\,10^5-10^6\,{\rm cm^{-3}}) phase which dominates the emission of medium-excitation H2_2O lines. This gas phase also dominates the FIR emission and the CO intensities for Jup>8J_{\rm up} > 8. In addition a cold (Tdust ∌ 20−30 KT_{\rm dust}\,\sim\,20-30\,{\rm K}), dense (n(H)∌ 104−105 cm−3n({\rm H})\sim\,10^4- 10^5\,{\rm cm^{-3}}) more extended phase is present. It outputs the emission in the low-excitation H2_2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (Rs ≀ 100_s\,\le\,100 pc) region is present which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with Eup≀300 KE_{\rm up}\le300\,{\rm K} and Eup≀800 KE_{\rm up}\le800\,{\rm K} in the warm and hot component, respectively. Higher energy levels are mainly excited by IR pumping.Comment: Accepted by ApJ, in pres

    The Advanced Glycation End Product, N\u3csup\u3eE\u3c/sup\u3e-(Carboxymethyl)lysine, Is a Product of Both Lipid Peroxidation and Glycoxidation Reactions

    Get PDF
    Nepsilon-(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in concert with conjugated dienes but was independent of the presence of the Amadori compound, fructoselysine, on the protein. CML was also formed in a time-dependent manner in RNase incubated under aerobic conditions in phosphate buffer containing arachidonate or linoleate; only trace amounts of CML were formed from oleate. After 6 days of incubation the yield of CML in RNase from arachidonate was approximately 0.7 mmol/mol lysine compared with only 0.03 mmol/mol lysine for protein incubated under the same conditions with glucose. Glyoxal, a known precursor of CML, was also formed during incubation of RNase with arachidonate. These results suggest that lipid peroxidation, as well as glycoxidation, may be an important source of CML in tissue proteins in vivo and that CML may be a general marker of oxidative stress and long term damage to protein in aging, atherosclerosis, and diabetes
    • 

    corecore