2,417 research outputs found
Thermal Energy Generation in the Earth
We show that a recently introduced class of electromagnetic composite
particles can explain some discrepancies in observations involving heat and
helium released from the earth. Energy release during the formation of the
composites and subsequent nuclear reactions involving the composites are
described that can quantitatively account for the discrepancies and are
expected to have implications in other areas of geophysics, for example, a new
picture of heat production and volcanism in the earth is presented.Comment: 11 pages, 7 figure
Translations and dynamics
We analyze the role played by local translational symmetry in the context of
gauge theories of fundamental interactions. Translational connections and
fields are introduced, with special attention being paid to their universal
coupling to other variables, as well as to their contributions to field
equations and to conserved quantities.Comment: 22 Revtex pages, no figures. Published version with minor correction
Electromagnetic wave scattering by a superconductor
The interaction between radiation and superconductors is explored in this
paper. In particular, the calculation of a plane standing wave scattered by an
infinite cylindrical superconductor is performed by solving the Helmholtz
equation in cylindrical coordinates. Numerical results computed up to
of Bessel functions are presented for different wavelengths
showing the appearance of a diffraction pattern.Comment: 3 pages, 3 figure
Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2
A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions
Resonant transmission of microwaves through a finite length subwavelength metallic slit
Copyright © 2005 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is the published version of an article published in New Journal of Physics Vol. 7, article 250. DOI:10.1088/1367-2630/7/1/250The resonant transmission of microwaves polarized perpendicular to a single subwavelength slit of finite length is presented in detail. It is shown that the resonant frequency rises monotonically as slit length is reduced. Increasing confinement of the resonant fields within the slit is shown to cause the frequency rise. Angle dependence of the transmission is also presented. The results show clearly Fabry-Perot-like standing waves in the direction of propagation with waveguide mode behaviour in the orthogonal direction
Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber
Trapping and optically interfacing laser-cooled neutral atoms is an essential
requirement for their use in advanced quantum technologies. Here we
simultaneously realize both of these tasks with cesium atoms interacting with a
multi-color evanescent field surrounding an optical nanofiber. The atoms are
localized in a one-dimensional optical lattice about 200 nm above the nanofiber
surface and can be efficiently interrogated with a resonant light field sent
through the nanofiber. Our technique opens the route towards the direct
integration of laser-cooled atomic ensembles within fiber networks, an
important prerequisite for large scale quantum communication schemes. Moreover,
it is ideally suited to the realization of hybrid quantum systems that combine
atoms with, e.g., solid state quantum devices
Poynting's theorem for planes waves at an interface: a scattering matrix approach
We apply the Poynting theorem to the scattering of monochromatic
electromagnetic planes waves with normal incidence to the interface of two
different media. We write this energy conservation theorem to introduce a
natural definition of the scattering matrix S. For the dielectric-dielectric
interface the balance equation lead us to the energy flux conservation which
express one of the properties of S: it is a unitary matrix. For the
dielectric-conductor interface the scattering matrix is no longer unitary due
to the presence of losses at the conductor. However, the dissipative term
appearing in the Poynting theorem can be interpreted as a single absorbing mode
at the conductor such that a whole S, satisfying flux conservation and
containing this absorbing mode, can be defined. This is a simplest version of a
model introduced in the current literature to describe losses in more complex
systems.Comment: 5 pages, 3 figures, submitted to Am. J. Phy
- …