993 research outputs found

    Entanglement of a qubit coupled to a resonator in the adiabatic regime

    Full text link
    We discuss the ground state entanglement of a bi-partite system, composed by a qubit strongly interacting with an oscillator mode, as a function of the coupling strenght, the transition frequency and the level asymmetry of the qubit. This is done in the adiabatic regime in which the time evolution of the qubit is much faster than the oscillator one. Within the adiabatic approximation, we obtain a complete characterization of the ground state properties of the system and of its entanglement content.Comment: 6 pages, 7 figure

    Domestication as innovation : the entanglement of techniques, technology and chance in the domestication of cereal crops

    Get PDF
    The origins of agriculture involved pathways of domestication in which human behaviours and plant genetic adaptations were entangled. These changes resulted in consequences that were unintended at the start of the process. This paper highlights some of the key innovations in human behaviours, such as soil preparation, harvesting and threshing, and how these were coupled with genetic ‘innovations’ within plant populations. We identify a number of ‘traps’ for early cultivators, including the needs for extra labour expenditure on crop-processing and soil fertility maintenance, but also linked gains in terms of potential crop yields. Compilations of quantitative data across a few different crops for the traits of nonshattering and seed size are discussed in terms of the apparently slow process of domestication, and parallels and differences between different regional pathways are identified. We highlight the need to bridge the gap between a Neolithic archaeobotanical focus on domestication and a focus of later periods on crop-processing activities and labour organization. In addition, archaeobotanical data provide a basis for rethinking previous assumptions about how plant genetic data should be related to the origins of agriculture and we contrast two alternative hypotheses: gradual evolution with low selection pressure versus metastable equilibrium that prolonged the persistence of ‘semi-domesticated’ populations. Our revised understanding of the innovations involved in plant domestication highlight the need for new approaches to collecting, modelling and integrating genetic data and archaeobotanical evidence

    Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter

    Full text link
    The PADME experiment, at the Laboratori Nazionali di Frascati (LNF), in Italy, will search for invisible decays of the hypothetical dark photon via the process e+e−→γAâ€Če^+e^-\rightarrow \gamma A', where the Aâ€ČA' escapes detection. The dark photon mass range sensitivity in a first phase will be 1 to 24 MeV. We report here on measurement and simulation studies of the performance of the Small-Angle Calorimeter, a component of PADME's detector dedicated to rejecting 2- and 3-gamma backgrounds. The crucial requirement is a timing resolution of less than 200 ps, which is satisfied by the choice of PbF2_2 crystals and the newly released Hamamatsu R13478UV photomultiplier tubes (PMTs). We find a timing resolution of 81 ps (with double-peak separation resolution of 1.8 ns) and a single-crystal energy resolution of 5.7%/E\sqrt{E} with light yield of 2.07 photo-electrons per MeV, using 100 to 400 MeV electrons at the Beam Test Facility of LNF. We also propose the investigation of a two-PMT solution coupled to a single PbF2_2 crystal for higher-energy applications, which has potentially attractive features.Comment: 12 pages, 19 figures. v2: added section on radiation damage studie

    Recovering Dietary Information from Extant and Extinct Primates Using Plant Microremains

    Get PDF
    When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology

    Canopy bird assemblages are less influenced by habitat age and isolation than understory bird assemblages in Neotropical secondary forest

    Get PDF
    Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests

    Comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition”

    Full text link
    Levis et al. (Research Articles, 3 March 2017, p. 925) concluded that pre-Columbian tree domestication has shaped present-day Amazonian forest composition.The study, however, downplays five centuries of human influence following European arrival to the Americas.We show that the effects of post-Columbian activities in Amazonia are likely to have played a larger role than pre-Columbian ones in shaping the observed floristic patterns.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138830/1/eaan8347.full.pdf85Description of eaan8347.full.pdf : main articl

    Hepatic intra-arterial versus intravenous fotemustine in patients with liver metastases from uveal melanoma (EORTC 18021): a multicentric randomized trial

    Get PDF
    Despite an improved antitumor efficacy as noticed by an enhanced response rate and an improved progression-free survival, the hepatic intra-arterial fotemustine did not increase the overall survival of uveal melanoma patients with liver metastases only. We propose to consider intrahepatic treatment as an experimental approac

    Modeling resilience and sustainability in ancient agricultural systems

    Get PDF
    The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past
    • 

    corecore