2,666 research outputs found

    Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

    Get PDF
    We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors, to study nucleon-deuteron (Nd) scattering and selected low-energy observables in 3H, 4He, and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon force contributions agree well with expectations based on Weinberg's power counting. We identify the energy range in elastic Nd scattering best suited to study three-nucleon force effects and estimate the achievable accuracy of theoretical predictions for various observables.Comment: 5 pages, 5 figure

    Low-energy neutron-deuteron reactions with N3LO chiral forces

    Get PDF
    We solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on Ay puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.Comment: 22 pages, 7 figure

    Crop Species Diversity Changes in the United States: 1978-2012

    Get PDF
    Citation: Aguilar, J., Gramig, G. G., Hendrickson, J. R., Archer, D. W., Forcella, F., & Liebig, M. A. (2015). Crop Species Diversity Changes in the United States: 1978-2012. Plos One, 10(8), 14. doi:10.1371/journal.pone.0136580Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability

    Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors

    Get PDF
    Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material

    Percutaneous ct fluoroscopy-guided core needle biopsy of mediastinal masses: Technical outcome and complications of 155 procedures during a 10-year period

    Get PDF
    Purpose: To evaluate technical outcome, diagnostic yield and safety of computed tomo-graphic fluoroscopy-guided percutaneous core needle biopsies in patients with mediastinal masses. Methods: Overall, 155 CT fluoroscopy-guided mediastinal core needle biopsies, performed from March 2010 to June 2020 were included. Size of lesion, size of needle, access path, number of success, number of biopsies per session, diagnostic yield, patient’s position, effective dose, rate of complications, tumor localization, size of tumor and histopathological diagnosis were considered. Post-interventional CT was performed, and patients observed for any complications. Complications were classified per the Society of Interventional Radiology (SIR). Results: 148 patients (age, 54.7 ± 18.2) underwent 155 CT-fluoroscopy-guided percutaneous biopsies with tumors in the anterior (114; 73.5%), middle (17; 11%) and posterior (24; 15.5%) mediastinum, of which 152 (98%) were technically successful. For placement of the biopsy needle, in 82 (52.9%) procedures a parasternal trajectory was chosen, in 36 (23.3%) a paravertebral access, in 20 (12.9%) through the lateral intercostal space and in 17 (11%) the thoracic anterior midline, respectively. A total of 136 (89.5%) of the biopsies were considered adequate for a specific histopathologic analysis. Total DLP (dose-length product) was 575.7 ± 488.8 mGy*cm. Mean lesion size was 6.0 ± 3.3 cm. Neoplastic pathology was diagnosed in 115 (75.7%) biopsies and 35 (23%) biopsy samples showed no evidence of malignancy. Minor complications were observed in 18 (11.6%) procedures and major pneumothorax requiring drainage insertion in 3 interventions (1.9%). Conclusion: CT fluoroscopy-guided percutaneous core needle biopsy of mediastinal masses is an effective and safe procedure for the initial assessment of patients with mediastinal tumors

    Grasses and Legumes for Cellulosic Bioenergy

    Get PDF
    Human life has depended on renewable sources of bioenergy for many thousands of years, since the time humans fi rst learned to control fi re and utilize wood as the earliest source of bioenergy. The exploitation of forage crops constituted the next major technological breakthrough in renewable bioenergy, when our ancestors began to domesticate livestock about 6000 years ago. Horses, cattle, oxen, water buffalo, and camels have long been used as sources of mechanical and chemical energy. They perform tillage for crop production, provide leverage to collect and transport construction materials, supply transportation for trade and migratory routes, and create manure that is used to cook meals and heat homes. Forage crops—many of which form the basis of Grass: The 1948 Yearbook of Agriculture (Stefferud, 1948), as well as the other chapters of this volume—have composed the principal or only diet of these draft animals since the dawn of agriculture

    Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields

    Get PDF
    Photorefractive polymers have been extensively studied for over two decades and have found applications in holographic displays and optical image processing. The complexity of these materials arises from multiple charge contributions, for example, leading to the formation of competing photorefractive gratings. It has been recently shown that in a photorefractive polymer at relatively moderate applied electric fields the primary charge carriers (holes) establish an initial grating, followed by a subsequent competing grating (electrons) resulting in a decreased two-beam coupling and diffraction efficiencies. In this paper, it is shown that with relatively large sustainable bias fields, the two-beam coupling efficiency is enhanced owing to a decreased electron contribution. These results also explain the cause of dielectric breakdown experienced under large bias fields. Our conclusions are supported by self-pumped transient two-beam coupling and photocurrent measurements as a function of applied bias fields at different wavelengths

    Time Dynamics of Self-Pumped Reflection Gratings in a Photorefractive Polymer

    Get PDF
    The time dynamics of self-pumped reflection gratings in a commonly used photorefractive polymer PDCST:PVK:ECZ-BBP:C60 with no additional electron sources or traps is investigated. While holes are normally the mobile charges and responsible for grating formation, our experimental observations, analyzed using multi-exponential fitting curves, show evidence of electrons in addition to holes as charge carriers, particularly above an applied field of 40 V/μm. The dependence of effective carrier mobilities on the applied electric field, deduced from experimental results, show stronger field dependence of electron mobility at high electric fields. At an applied field of 70 V/μm, electron and hole mobilities become approximately equal, and the contribution of electrons on grating formation becomes significant

    Properties of ^{4}He and ^{6}Li with improved chiral EFT interactions

    Get PDF
    We present recent results for 4He and 6Li obtained with improved NN interactions derived from chiral effective field theory up to N4LO. The many-body calculations are performed order-by-order in the chiral expansion. At N3LO and N4LO additional renormalization using the Similarity Renormalization Group is adopted to improve numerical convergence of the many-body calculations. We discuss results for the ground state energies, as well as the magnetic moment and the low-lying spectrum of 6Li
    corecore