4,439 research outputs found

    Secure exchange of information by synchronization of neural networks

    Full text link
    A connection between the theory of neural networks and cryptography is presented. A new phenomenon, namely synchronization of neural networks is leading to a new method of exchange of secret messages. Numerical simulations show that two artificial networks being trained by Hebbian learning rule on their mutual outputs develop an antiparallel state of their synaptic weights. The synchronized weights are used to construct an ephemeral key exchange protocol for a secure transmission of secret data. It is shown that an opponent who knows the protocol and all details of any transmission of the data has no chance to decrypt the secret message, since tracking the weights is a hard problem compared to synchronization. The complexity of the generation of the secure channel is linear with the size of the network.Comment: 11 pages, 5 figure

    Statistical mechanical aspects of joint source-channel coding

    Full text link
    An MN-Gallager Code over Galois fields, qq, based on the Dynamical Block Posterior probabilities (DBP) for messages with a given set of autocorrelations is presented with the following main results: (a) for a binary symmetric channel the threshold, fcf_c, is extrapolated for infinite messages using the scaling relation for the median convergence time, tmed∝1/(fc−f)t_{med} \propto 1/(f_c-f); (b) a degradation in the threshold is observed as the correlations are enhanced; (c) for a given set of autocorrelations the performance is enhanced as qq is increased; (d) the efficiency of the DBP joint source-channel coding is slightly better than the standard gzip compression method; (e) for a given entropy, the performance of the DBP algorithm is a function of the decay of the correlation function over large distances.Comment: 6 page

    Cryptography based on neural networks - analytical results

    Full text link
    Mutual learning process between two parity feed-forward networks with discrete and continuous weights is studied analytically, and we find that the number of steps required to achieve full synchronization between the two networks in the case of discrete weights is finite. The synchronization process is shown to be non-self-averaging and the analytical solution is based on random auxiliary variables. The learning time of an attacker that is trying to imitate one of the networks is examined analytically and is found to be much longer than the synchronization time. Analytical results are found to be in agreement with simulations

    Finite size effects and error-free communication in Gaussian channels

    Get PDF
    The efficacy of a specially constructed Gallager-type error-correcting code to communication in a Gaussian channel is being examined. The construction is based on the introduction of complex matrices, used in both encoding and decoding, which comprise sub-matrices of cascading connection values. The finite size effects are estimated for comparing the results to the bounds set by Shannon. The critical noise level achieved for certain code-rates and infinitely large systems nearly saturates the bounds set by Shannon even when the connectivity used is low

    Masculinity at work: The experiences of men in female dominated occupations

    Get PDF
    This paper presents the findings of a research project on the implications of men's non-traditional career choices for their experiences within the organization and for gender identity. The research is based on 40 in-depth interviews with male workers from four occupational groups: librarian-ship, cabin crew, nurses and primary school teachers. Results suggest a typology of male workers in female dominated occupations: seekers (who actively seek the career), finders (who find the occupation in the process of making general career decisions) and settlers (who settle into the career after periods of time in mainly male dominated occupations). Men benefit from their minority status through assumptions of enhanced leadership (the assumed authority effect), by being given differential treatment (the special consideration effect) and being associated with a more careerist attitude to work (the career effect). At the same time, they feel comfortable working with women (the zone of comfort effect). Despite this comfort, men adopt a variety of strategies to re-establish a masculinity that has been undermined by the 'feminine' nature of their work. These include re-labeling, status enhancement and distancing from the feminine. The dynamics of maintaining and reproducing masculinities within the non-traditional work setting are discussed in the light of recent theorising around gender, masculinity and work

    The role of women on boards in corporate environmental strategy and financial performance: A global outlook

    Get PDF
    This study examines the impact of board gender diversity on corporate environmental strategy and financial performance. Based on 12 corporate environmental policies in 3389 firms worldwide, we identified four types of corporate environmental strategies by using the latent class regression model: an inactive strategy, a reactive strategy, a pollution prevention strategy and a sustainable development strategy. The empirical evidence shows that women on boards contribute to the promotion of proactive environmental strategies, including the pollution prevention strategy, which is found to bring about sustained competitive advantage in both short-term and long-term financial performance, and the sustainable development strategy, which is positively associated with long-term financial performance. Following the natural-resource-based view of the firm, these findings indicate that women on boards can be seen as a key resource in the organizational process, which provides a shared vision of the future and strong moral leadership to the top management team

    Nonlocal mechanism for cluster synchronization in neural circuits

    Full text link
    The interplay between the topology of cortical circuits and synchronized activity modes in distinct cortical areas is a key enigma in neuroscience. We present a new nonlocal mechanism governing the periodic activity mode: the greatest common divisor (GCD) of network loops. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the number of clusters can be any common divisor. The synchronized mode and the transients to synchronization pinpoint the type of external stimuli. The findings, supported by an information mixing argument and simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity and synaptic noise, call for reexamining sources of correlated activity in cortex and shorter information processing time scales.Comment: 8 pges, 6 figure

    Mean Field Behavior of Cluster Dynamics

    Full text link
    The dynamic behavior of cluster algorithms is analyzed in the classical mean field limit. Rigorous analytical results below TcT_c establish that the dynamic exponent has the value zsw=1z_{sw}=1 for the Swendsen-Wang algorithm and zuw=0z_{uw}=0 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using these algorithms for fully connected graphs. Extensive simulations both above and below TcT_c demonstrate scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.Comment: Revtex, 9 pages with 7 figure

    Interplay of composition, structure, magnetism, and superconductivity in SmFeAs1-xPxO1-y

    Full text link
    Polycrystalline samples and single crystals of SmFeAs1-xPxO1-y were synthesized and grown employing different synthesis methods and annealing conditions. Depending on the phosphorus and oxygen content, the samples are either magnetic or superconducting. In the fully oxygenated compounds the main impact of phosphorus substitution is to suppress the N\'eel temperature TN of the spin density wave (SDW) state, and to strongly reduce the local magnetic field in the SDW state, as deduced from muon spin rotation measurements. On the other hand the superconducting state is observed in the oxygen deficient samples only after heat treatment under high pressure. Oxygen deficiency as a result of synthesis at high pressure brings the Sm-O layer closer to the superconducting As/P-Fe-As/P block and provides additional electron transfer. Interestingly, the structural modifications in response to this variation of the electron count are significantly different when phosphorus is partly substituting arsenic. Point contact spectra are well described with two superconducting gaps. Magnetic and resistance measurements on single crystals indicate an in-plane magnetic penetration depth of 200 nm and an anisotropy of the upper critical field slope of 4-5. PACS number(s): 74.70.Xa, 74.62.Bf, 74.25.-q, 81.20.-nComment: 36 pages, 13 figures, 2 table
    • 

    corecore