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2 Information transmission is typically corrupted by noise during transmission.Various strategies have been adopted for reducing or eliminating the noise in the receivedmessage. One of the main approaches is the use of error-correcting codes whereby theoriginal message is encoded prior to transmission in a manner that enables the retrievalof the original message from the corrupted transmission. The maximal transmissionrate is bounded by the channel capacity derived by Shannon [1] in his ground breakingwork of 1948, which does not provide speci�c constructions of optimal codes.Various types of error-correcting codes have been devised over the years (for a reviewsee [2]) for improving the transmission e�ciency, most of them are generally still belowShannon's limit. We will concentrate here on a member of the parity-check codes familyintroduced by Gallager [3], termed the MN code [4] and on a speci�c constructionsuggested by us previously [5] for the Binary Symmetric Channel (BSC).The connection between parity-check codes and statistical physics has been �rstpointed out in Ref.[6], by mapping the decoding problem onto that of a particularIsing-system with multi-spin interactions. The corresponding Hamiltonian has beeninvestigated in both fully-connected[6] and diluted systems[7, 8] for deriving the typicalperformance of these codes; more complex architectures, somewhat similar to thoseexamined below have been investigated in[9], establishing the connection betweenstatistical physics and Gallager type codes. Most of these studies have been carriedout for a particular channel model, the BSC, whereby a fraction of the transmittedvector bits is 
ipped at random during transmission.However, di�erent noise models may be considered for simulating communication invarious media. One of the most commonly used noise models, which is arguably the mostsuitable one for a wide range of applications, is that of additive Gaussian noise (usuallytermed Additive White Gaussian Noise-AWGN in the literature). In this scenario,a message comprising N binary bits is transmitted through a noisy communicationchannel; a certain power level is used in transmitting the information which we willchoose to be �1 for simplicity. The transmitted message is then corrupted by additiveGaussian noise of zero mean and some variance �2; the received (real valued) messageis then decoded to retrieve the original message.The receiver can correct the 
ipped bits only if the source transmits M >N bits;the ratio between the original number of bits and those of the transmitted messageR � N=M constitutes the code-rate for unbiased messages. The channel capacity inthe case of real-valued transmissions corrupted by Gaussian noise, which provides thebound on the maximal code rate Rc, is given explicitly[10] byRc = 12 log(1 + v2=�2) ; (1)where v2 is the power used for transmission (which we take here to be �1) and v2=�2is therefore the signal to noise ratio. However, we will focus here on binary source



3messages; this reduces the maximal code rate to[10]Rc = � Z dyP (y) logP (y) + Z dyP (yjx = x0) logP (yjx = x0) ; (2)where x is a transmitted bit (of value x0=�1) and y the received bit after corruptionby an additive Gaussian noise, such thatP (y) = 12p2��2 he�(y�x)2=(2�2) + e�(y+x)2=(2�2)i :The speci�c error-correcting code that we will use here is a variation of the Gallagercode [3]. It became popular recently due to the excellent performance of its regular[4],irregular[11, 12, 13] and the cascading connection[5] versions. In the original method,the transmitted message comprises the original message itself and additional bits, eachof which is derived from the parity of a sum of certain message-vector bits. The choiceof the message-vector elements used for generating single code-word bits is carried outaccording to a predetermined random set-up and may be represented by a productof a randomly generated sparse matrix and the message-vector in a manner explainedbelow. Decoding the received message relies on iterative probabilistic methods like beliefpropagation[4, 14] or belief revision[15].In the MN code one constructs two sparse matrices A and B of dimensionalitiesM�N and M�M respectively. The matrix A has K non-zero (unit) elements per rowand C(= KM=N) per column while B has L per row/column. The matrix B�1A isthen used for encoding the messagetB = B�1A s (mod 2) :The Boolean message vector tB is then transmitted as a vector t of real-valued elements,which we will choose for simplicity as �1, and is corrupted by a real-valued noise vector�, where each element is sampled from a Gaussian distribution of zero mean and variance�2. The received message is of the formr = t+ � :Using the noise model and the probability of the transmitted bit being t� = �1:P (t� = �1jr�) = e� (t��r�)22�2e� (t��r�)22�2 + e� (t�+r�)22�2 = 11 + e� 2t�r��2 ; (3)one can easily convert the real-valued noise � to a 
ip noise vector such that theprobability of an error n� = 1 (error) isP (n� = 1) = 11 + e� 2r��2 : (4)



4Note that P (n� = 1) may be larger than 1=2. The noise vector n and our estimate forthe transmitted vector bt are de�ned probabilistically by using the probabilities derivedin Eq.(4) and Eq.(3) respectively.Having an estimate for the transmitted vector bt as well as an estimate for the noisevector n, one decodes the binary received message bt by employing the matrix B toobtain: z = B bt = As+Bn : (5)This requires solving the equation[A;B] " s0n0 # = z ;where s0 and n0 are the unknowns. This is being carried out here using methods ofbelief network decoding[4, 14], where pseudo-posterior probabilities, for the decodedmessage bits being 0 or 1, are calculated by solving iteratively a set of equations for theconditional probabilities of the codeword bits given the decoded message and vice versa.For exact details of the method used and the equation themselves see[4]. Two di�erencesfrom the framework used in the case of a Binary Symmetric Channel (BSC) that shouldbe noticed: 1) The probabilities of Eq.(4) and Eq.(3) may be used for de�ning the priorsfor single components of the noise and signal vectors respectively. 2) Initial conditionsfor the noise part of the dynamics may also be derived using Eq.(4).The key point in obtaining improved performance is the construction of the matricesA and B. The original MN code[4] as well as that of Gallager[3] advocated the use ofregular architectures with �xed column connectivity; it also suggested that �xed Kvalues may be preferred. Recent work in the area of irregular codes [11, 12, 13] suggestthat irregular codes have the potential of providing superior performance which nearlysaturates Shannon's limit. These methods concentrate on di�erent column connectivitiesand use high K and C values (up to 50), which of course increase the complexity of thealgorithm and the decoding time required. Decoding delays are of major considerationin most practical applications.Our method uses the same structure as the MN codes and builds on insight gainedfrom the study of physical systems with symmetric and asymmetric[16] multi-spininteractions and from examining special cases of Gallager's method[7, 9]. Our previousstudies for the binary symmetric channel[5] suggest that a careful construction, basedon di�erent K and L values for the sub-matrices of A and B respectively, whilekeeping the connectivity of each of the sub-matrices (and of the matrix as a whole)as uniform as possible, will provide the best results. The guidelines for this architectureare given below and come from the mean-�eld calculations of Refs.[5, 17], showingthat the choice of low K and L value codes results in a large basin of attraction butimperfect end-magnetisation, while codes with higher K and L values can potentially



5saturate Shannon's bound but su�er from a rapidly decreasing basin of attraction as Kand L increase. To exploit the advantages of both architectures and obtain optimalperformance, a cascading method was suggested[5, 17] whereby one constructs thematrices A and B from sub-matrices of di�erent K and L values; such that lowervalues will drive the overlap increase between the decoded and the original messages toa level that enables the higher connectivity sub-matrices to come into play, allowing thesystem to converge to the perfectly decoded message[17].Optimising the trade-o� between having a large basin of attraction and improvedend magnetisation can be done straightforwardly[17] in the case of simple codes [6] butis not very easy in general. Guidelines for optimising the construction in the generalcase have been provided in Ref.[5]; the key points include: 1) The �rst sub-matricesare characterised by low K and L values (� 2), while K values in subsequent sub-matrices are chosen gradually higher, so as to support the correction of faulty bits, andL = 1. 2) Keeping the number of non-zero column elements as uniform as possible(preferably �xed). 3) To guarantee the inversion of the matrix B, and since noise bitshave no explicit correlation, we use a patterned structure, Bi;k = �i;k+�i;k+5, for theB-sub-matrices with L=2 and Bi;k= �i;k for L=1. 4) The sub-matrix with the lowestK value, which dominated the dynamics in the initial stage, low magnetisation, has toinclude some odd K values in order to break the inversion symmetry, otherwise the twosolutions with m=�1 are equally attractive. It was also found to dramatically improvethe convergence times.We will now focus on two speci�c architectures, constructed for the cases of R = 1=2and R = 1=4, for demonstrating the exceptional performance obtained by employingthis method. In each of the cases we divided the composed matrix [AjB] to severalsub-matrices characterised by speci�c K and L values as explained in table 1; thedimensionalities of the full A and B matrices are M �N and M �M respectively.Sub-matrix elements were chosen at random (in matrix A) according to the guidelinesmentioned above. Encoding was carried out straightforwardly by using the matrixB�1A. The corrupted messages were decoded using the set of recursive equations ofRef.[4], using random initial conditions for the signal while the initial conditions for thenoise vector where obtained according to the noise and signal probabilities Eq.(4). Theprior probabilities of were chosen according to Eqs.(4) and (3).In each experiment, T blocks of N -bit unbiased messages were sent through aGaussian noisy channel of zero mean and variance �2 (enforced exactly); the bit error-rate, denoted pb, was monitored. We performed between T = 104 � 5 � 104 trial runsfor each system size and noise level, starting from di�erent initial conditions. Thesewere averaged to obtain the mean bit error-rate and the corresponding variance. Inmost of our experiments we observed convergence after less than 100 iterations, exceptvery close to the critical noise level. The main halting criterion we adopted relies on



6either obtaining a solution to Eq.(5) or by the stationarity of the �rst N bits (i.e., thedecoded message) over a certain number of iterations. One should also mention that thedecoding algorithm's complexity is of O(N) as all matrices are sparse. The inversion ofthe matrix B is carried out only once and requires O(1) operations due to the structurechosen.The construction used for the matrices in these two cases appear in table 1 as well asthe maximal standard deviation �Nc for which Pb < 2� 10�5 for a given message lengthN , the predicted maximal standard deviation �1c once �nite size e�ects have beenconsidered (discussed below) and Shannon's maximal standard deviation �c de�ned inEq.(2). These results, as well as other results reported here, could be improved upon byavoiding matrices with small loops and by replacing the method of belief propagationby belief revision (our random construction of the matrix A even allows for small loopsof size one). It was shown that both improvements have a signi�cant impact on theperformance of this type of codes[4, 15]. With these improvements, the actual bit errorsis expected to be typically lower than the reported value of Pb = 2� 10�5; however, aswe have been limited to about T = 5 � 104 trials per noise value we can only providean upper bound to the actual error values.To compare our results to those obtained by using turbo codes[18] and in Ref.[13] weplotted in Fig.1 the two curves (dotted and dashed respectively), for N = 103 and 104,against the results obtained using our cascading connection method (�lled triangles). Itis clear from the �gure that results obtained using our method are superior in all casesexamined. Furthermore, from table 1, one can conclude that the averaged connectivity,C in the case of R = 1=2 and 1=4 is 5 and 9 respectively for the matrix A and 3=2 forthe matrix B. Similarly, the averaged K values for R = 1=2 and 1=4 are K = 5=2 and9=4, respectively. These number are much smaller than those used in Refs.[12, 13] andother irregular constructions. Minimising K and C is of great interest to practitionerssince decoding delays are directly proportional to the K and C values used[4].It is clear from Fig.1 that the �nite size e�ects are signi�cant in de�ning the code'sperformance. It is therefore desirable to �nd the performance in the limit of in�nitemessages which are also assumed in deriving Shannon's bound. We employ two mainmethods for studying the �nite size e�ects: a) The transition from perfect (m(�)=1) tono retrieval (m(�)=0), as a function of the standard deviation �, is expected to becomea step function (at �1c ) as N !1; therefore, if the percentage of perfectly retrievedblocks in the sample, for a given standard deviation �, increases (decreases) with None can deduce that �<�1c (or �>�1c ). b) Convergence times near criticality usuallydiverge as 1=(�1c � �); by monitoring average convergence times for various � valuesand extrapolating one may deduce the corresponding critical standard deviation.Both methods have been used in �nding the critical values for R = 1=2 and R = 1=4;the results obtained appear in table 1. In Fig.2 we demonstrate the two methods: we



7ordered the samples obtained for R = 1=2, � = 0:915; 0:935 (dashed and solid linesrespectively) and N =1000; 10000 (thin and thick lines respectively) according to theirmagnetisation; results with higher magnetisation appear on the left and the x axis wasnormalised to represent fractions of the complete set of trials. One can easily see that thefraction of perfectly retrieved blocks increases with system size indicating that � < �1c .In the inset one �nds log-log plots of the mean convergence times � for R=1=2; 1=4 andN = 10000 carried out on perfectly retrieved blocks with less than 3 error bits. Theoptimal �tting of expressions of the form � / 1=(�1c � �) provides another indicationfor the �1c values, which are consistent with those obtained by the �rst method.We end this presentation by discussing the main di�erence between our method andthose presented in Refs.[11, 12, 13]. Firstly, our construction builds on sub-matrices ofdi�erent K and L values keeping the connectivity in each of the columns as uniformas possible; this equates the corrections received by the various bits while allowingthem to participate in di�erent multi-spin interactions, so as to provide contributionsof di�erent types throughout the dynamics. In contrast, other irregular codes buildon the use of di�erent column connectivities such that a small number of bits, ofhigh connectivity, will lead the decoding process, gathering more corrected bits as thedecoding progresses. Secondly, Refs.[11, 12, 13] as well as others point to the need ofhigh multi-spin interactions for achieving performance close to Shannon's bound; weshow here that low K, L and C values are su�cient for near-optimal performance (inthe case of R = 1=2 and 1=4 the averaged connectivities are C = 5 and 9 respectivelyfor the matrix A and 3=2 for the matrix B), allowing one to carry out the encodingand decoding tasks signi�cantly faster. Our work suggests that it is possible to comevery close to saturating Shannon's bound with �nite connectivity, at least for the coderates considered here. It is plausible that operating close to R= 1 will require higherK, L values and may require in�nite C or C values; this question is currently underinvestigation.We have shown that through a successive change in the number of multi-spininteractions (K and L) one can boost the performance of Gallager-type error-correctingcodes. The results obtained here for the case of additive Gaussian noise suggestscompetitive performance to similar state-of-the-art codes for �nite N values; extendingthe results to the case of in�nitely large systems suggest that the current code is less than0:1dB from saturating the theoretical bounds set by Shannon. It would be interestingto examine methods for improving the �nite size behaviour of this type of codes; thesewould be of great interest to practitioners.Acknowledgement We would like to thank Dr. Yoshiyuki Kabashima for helpfuldiscussions.
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9R A K B L �10000c /(dB) �1c /(dB) �c/(dB)1=2 1=10 N�N 1 1=10 N�2N 2 0.89 0.973 0.9799=10 N�N 2 9=10 N�2N 2 (1.012) (0.238) (0.185)3=4 N�N 2 3=4 N�2N 13=20 N�N 6 3=20 N�2N 11=10 N�N 7 1=10 N�2N 11=4 3=2 N�N 1 3=2 N�4N 2 1.45 1.537 1.550N=2�N 4 N=2�4N 2 (-0.217) (-0.721) (-0.797)1=3 N�N 4 1=3 N�4N 15=6 N�N 3 5=6 N�4N 15=6 N�N 2 5=6 N�4N 1Table 1. The critical noise standard deviation �Nc and �1c obtained by employingour method for various code rates in comparison to the maximal standard deviation�c provided by Shannon's bound. Details of the speci�c architectures used and theirrow/column connectivities are also provided.
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Figure 1. Bit-error rate pb as a function of the standard deviation for a given code-rate R = 1=2 for systems of size N = 1000; 10000 (right and left respectively). Ourresults for each system size appear as black triangles, while results obtained via theturbo code and in Ref.[13] for systems of similar sizes appear as curves (dotted anddashed respectively)
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Figure 2. The block magnetisations pro�le for R = 1=2, � = 0:915; 935 (dashedand solid lines respectively) and N = 1000; 10000 (thin and thick lines respectively),showing the sample magnetisation m vs. the fraction of the complete set of trials.A total of about 10000 trials were rearranged in a descending order according totheir magnetisation values. One can see that the fraction of perfectly retrieved blocksincreases with system size. Inset - log-log plots of mean convergence times � forN = 10000 and R = 1=2; 1=4 (white and black triangles respectively). The �1c valueswere calculated by �tting expressions of the form � / 1=(�1c � �) through the data.


