A connection between the theory of neural networks and cryptography is
presented. A new phenomenon, namely synchronization of neural networks is
leading to a new method of exchange of secret messages. Numerical simulations
show that two artificial networks being trained by Hebbian learning rule on
their mutual outputs develop an antiparallel state of their synaptic weights.
The synchronized weights are used to construct an ephemeral key exchange
protocol for a secure transmission of secret data. It is shown that an opponent
who knows the protocol and all details of any transmission of the data has no
chance to decrypt the secret message, since tracking the weights is a hard
problem compared to synchronization. The complexity of the generation of the
secure channel is linear with the size of the network.Comment: 11 pages, 5 figure