4,328 research outputs found
Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films
The durations and average speeds of ultrashort optical pulses transmitted
through chiral sculptured thin films (STFs) were calculated using a
finite-difference time-domain algorithm. Chiral STFs are a class of
nanoengineered materials whose microstructure comprises parallel helicoidal
nanowires grown normal to a substrate. The nanowires are 10-300 nm in
diameter and m in length. Durations of transmitted pulses tend to
increase with decreasing (free-space) wavelength of the carrier plane wave,
while average speeds tend to increase with increasing wavelength. An increase
in nonlinearity, as manifested by an intensity-dependent refractive index in
the frequency domain, tends to increase durations of transmitted pulses and
decrease average speeds. The circular Bragg phenomenon exhibited by a chiral
STFs manifests itself in the frequency domain as high reflectivity for normally
incident carrier plane waves whose circular polarization state is matched to
the structural handedness of the film and whose wavelength falls in a range
known as the Bragg regime; films of the opposite structural handedness reflect
such plane waves little. This effect tends to distort the shapes of transmitted
pulses with respect to the incident pulses, and such shaping can cause sharp
changes in some measures of average speed with respect to carrier wavelength. A
local maximum in the variation of one measure of the pulse duration with
respect to wavelength is noted and attributed to the circular Bragg phenomenon.
Several of these effects are explained via frequency-domain arguments. The
presented results serve as a foundation for future theoretical and experimental
studies of optical pulse propagation through causal, nonlinear, nonhomogeneous,
and anisotropic materials.Comment: To appear in Journal of Modern Optic
Modeling laser wakefield accelerators in a Lorentz boosted frame
Modeling of laser-plasma wakefield accelerators in an optimal frame of
reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of
calculations from first principles. Obtaining these speedups requires
mitigation of a high-frequency instability that otherwise limits effectiveness
in addition to solutions for handling data input and output in a
relativistically boosted frame of reference. The observed high-frequency
instability is mitigated using methods including an electromagnetic solver with
tunable coefficients, its extension to accomodate Perfectly Matched Layers and
Friedman's damping algorithms, as well as an efficient large bandwidth digital
filter. It is shown that choosing the frame of the wake as the frame of
reference allows for higher levels of filtering and damping than is possible in
other frames for the same accuracy. Detailed testing also revealed
serendipitously the existence of a singular time step at which the instability
level is minimized, independently of numerical dispersion, thus indicating that
the observed instability may not be due primarily to Numerical Cerenkov as has
been conjectured. The techniques developed for Cerenkov mitigation prove
nonetheless to be very efficient at controlling the instability. Using these
techniques, agreement at the percentage level is demonstrated between
simulations using different frames of reference, with speedups reaching two
orders of magnitude for a 0.1 GeV class stages. The method then allows direct
and efficient full-scale modeling of deeply depleted laser-plasma stages of 10
GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to
very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for
the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively
Detecting early signs of depressive and manic episodes in patients with bipolar disorder using the signature-based model
Recurrent major mood episodes and subsyndromal mood instability cause
substantial disability in patients with bipolar disorder. Early identification
of mood episodes enabling timely mood stabilisation is an important clinical
goal. Recent technological advances allow the prospective reporting of mood in
real time enabling more accurate, efficient data capture. The complex nature of
these data streams in combination with challenge of deriving meaning from
missing data mean pose a significant analytic challenge. The signature method
is derived from stochastic analysis and has the ability to capture important
properties of complex ordered time series data. To explore whether the onset of
episodes of mania and depression can be identified using self-reported mood
data.Comment: 12 pages, 3 tables, 10 figure
Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame
Laser driven plasma accelerators promise much shorter particle accelerators
but their development requires detailed simulations that challenge or exceed
current capabilities. We report the first direct simulations of stages up to 1
TeV from simulations using a Lorentz boosted calculation frame resulting in a
million times speedup, thanks to a frame boost as high as gamma=1300. Effects
of the hyperbolic rotation in Minkowski space resulting from the frame boost on
the laser propagation in the plasma is shown to be key in the mitigation of a
numerical instability that was limiting previous attempts
Motivations and experiences of UK students studying abroad
This report summarises the findings of research aimed at improving understanding of the motivations behind the international diploma mobility of UK student
Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels
Narrow bandwidth, high energy photon sources can be generated by Thomson
scattering of laser light from energetic electrons, and detailed control of the
interaction is needed to produce high quality sources. We present analytic
calculations of the energy-angular spectra and photon yield that parametrize
the influences of the electron and laser beam parameters to allow source
design. These calculations, combined with numerical simulations, are applied to
evaluate sources using conventional scattering in vacuum and methods for
improving the source via laser waveguides or plasma channels. We show that the
photon flux can be greatly increased by using a plasma channel to guide the
laser during the interaction. Conversely, we show that to produce a given
number of photons, the required laser energy can be reduced by an order of
magnitude through the use of a plasma channel. In addition, we show that a
plasma can be used as a compact beam dump, in which the electron beam is
decelerated in a short distance, thereby greatly reducing radiation shielding.
Realistic experimental errors such as transverse jitter are quantitatively
shown to be tolerable. Examples of designs for sources capable of performing
nuclear resonance fluorescence and photofission are provided
Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis
Objective To assess whether lithium has a specific preventive effect for suicide and self harm in people with unipolar and bipolar mood disorders. Design Systematic review and meta-analysis. Data sources Medline, Embase, CINAHL, PsycINFO, CENTRAL, web based clinical trial registries, major textbooks, authors of important papers and other experts in the discipline, and websites of pharmaceutical companies that manufacture lithium or the comparator drugs (up to January 2013). Inclusion criteria Randomised controlled trials comparing lithium with placebo or active drugs in long term treatment for mood disorders. Review methods Two reviewers assessed studies for inclusion and risk of bias and extracted data. The main outcomes were the number of people who completed suicide, engaged in deliberate self harm, and died from any cause. Results 48 randomised controlled trials (6674 participants, 15 comparisons) were included. Lithium was more effective than placebo in reducing the number of suicides (odds ratio 0.13, 95% confidence interval 0.03 to 0.66) and deaths from any cause (0.38, 0.15 to 0.95). No clear benefits were observed for lithium compared with placebo in preventing deliberate self harm (0.60, 0.27 to 1.32). In unipolar depression, lithium was associated with a reduced risk of suicide (0.36, 0.13 to 0.98) and also the number of total deaths (0.13, 0.02 to 0.76) compared with placebo. When lithium was compared with each active individual treatment a statistically significant difference was found only with carbamazepine for deliberate self harm. Lithium tended to be generally better than the other active comparators, with small statistical variation between the results. Conclusions Lithium is an effective treatment for reducing the risk of suicide in people with mood disorders. Lithium may exert its antisuicidal effects by reducing relapse of mood disorder, but additional mechanisms should also be considered because there is some evidence that lithium decreases aggression and possibly impulsivity, which might be another mechanism mediating the antisuicidal effect
Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons
The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250°C for several hours. As a function of both time and annealing temperature, the surface plasmon band at ≈420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are osbserved, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis
Associations between single nucleotide polymorphisms in the calcium sensing receptor and chronic kidney disease-mineral and bone disorder in cats
Feline chronic kidney disease (CKD) is associated with high variability in severity of CKD-mineral and bone disorder (CKD-MBD). The calcium sensing receptor (CaSR) regulates circulating parathyroid hormone (PTH) and calcium concentrations. Single nucleotide polymorphisms (SNPs) in the CaSR are associated with severity of secondary renal hyperparathyroidism and total calcium concentrations in human patients receiving haemodialysis. The objective of this study was to explore associations between polymorphisms in the feline CaSR (fCaSR) and biochemical changes observed in CKD-MBD.
Client owned cats (≥ 9 years) were retrospectively included. SNP discovery was performed in 20 cats with azotaemic CKD and normal or dysregulated calcium concentrations. Non-pedigree cats (n = 192) (125 with azotaemic CKD and 66 healthy), Persians (n = 40) and Burmese (n = 25) were genotyped for all identified SNPs using KASP. Biochemical parameters from the date of CKD diagnosis or from first visit to the clinic (healthy cats) were used. Associations between genotype and ionized calcium, total calcium, phosphate, PTH and FGF-23 were performed for non-pedigree cats using logistic regression.
Sequence alignment against the fCaSR sequence revealed eight novel exonic SNPs. KASP genotyping had high accuracy (99.6%) and a low failure rate (A was associated with logPTH concentration (adjusted for plasma creatinine concentration), with a recessive model having the best fit (G/G vs A/A-G/A, P = 0.031).
Genetic variation in the fCaSR is unlikely to explain the majority of the variability in presence and severity of CKD-MBD in cats
- …