2,421 research outputs found
Fatigue design procedure for the American SST prototype
For supersonic airline operations, significantly higher environmental temperature is the primary new factor affecting structural service life. Methods for incorporating the influence of temperature in detailed fatigue analyses are shown along with current test indications. Thermal effects investigated include real-time compared with short-time testing, long-time temperature exposure, and stress-temperature cycle phasing. A method is presented which allows designers and stress analyzers to check fatigue resistance of structural design details. A communicative rating system is presented which defines the relative fatigue quality of the detail so that the analyst can define cyclic-load capability of the design detail by entering constant-life charts for varying detail quality. If necessary then, this system allows the designer to determine ways to improve the fatigue quality for better life or to determine the operating stresses which will provide the required service life
Reflections on Tiles (in Self-Assembly)
We define the Reflexive Tile Assembly Model (RTAM), which is obtained from
the abstract Tile Assembly Model (aTAM) by allowing tiles to reflect across
their horizontal and/or vertical axes. We show that the class of directed
temperature-1 RTAM systems is not computationally universal, which is
conjectured but unproven for the aTAM, and like the aTAM, the RTAM is
computationally universal at temperature 2. We then show that at temperature 1,
when starting from a single tile seed, the RTAM is capable of assembling n x n
squares for n odd using only n tile types, but incapable of assembling n x n
squares for n even. Moreover, we show that n is a lower bound on the number of
tile types needed to assemble n x n squares for n odd in the temperature-1
RTAM. The conjectured lower bound for temperature-1 aTAM systems is 2n-1.
Finally, we give preliminary results toward the classification of which finite
connected shapes in Z^2 can be assembled (strictly or weakly) by a singly
seeded (i.e. seed of size 1) RTAM system, including a complete classification
of which finite connected shapes be strictly assembled by a "mismatch-free"
singly seeded RTAM system.Comment: New results which classify the types of shapes which can
self-assemble in the RTAM have been adde
Force induced triple point for interacting polymers
We show the existence of a force induced triple point in an interacting
polymer problem that allows two zero-force thermal phase transitions. The phase
diagrams for three different models of mutually attracting but self avoiding
polymers are presented. One of these models has an intermediate phase and it
shows a triple point but not the others. A general phase diagram with
multicritical points in an extended parameter space is also discussed.Comment: 4 pages, 8 figures, revtex
Obedience and Personal Responsibility
Dangerous contexts are those in which the stakes are high and where there may be little time to develop or discuss a course of action. Unquestioning and immediate obedience may be demanded precisely because deliberating or discussing might delay responding and thereby increase danger or decrease chances of survival. In some cases, there may be time for deliberation and discussion, even if there is pressure to act quickly. Reaching the right conclusions when the chips are down can be facilitated by having considered in advance one\u27s obligation to obey an order versus responsibility to oneself, one\u27s values, and others who may be affected by actions taken. This chapter considers legal constraints on behavior and scientific evidence that helps frame thinking about the pressures people may face and how to resist them. Two fictitious scenarios are used to illustrate the application of these considerations in practice
Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment.
Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention
The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square
In this paper we define the Dupled abstract Tile Assembly Model (DaTAM),
which is a slight extension to the abstract Tile Assembly Model (aTAM) that
allows for not only the standard square tiles, but also "duple" tiles which are
rectangles pre-formed by the joining of two square tiles. We show that the
addition of duples allows for powerful behaviors of self-assembling systems at
temperature 1, meaning systems which exclude the requirement of cooperative
binding by tiles (i.e., the requirement that a tile must be able to bind to at
least 2 tiles in an existing assembly if it is to attach). Cooperative binding
is conjectured to be required in the standard aTAM for Turing universal
computation and the efficient self-assembly of shapes, but we show that in the
DaTAM these behaviors can in fact be exhibited at temperature 1. We then show
that the DaTAM doesn't provide asymptotic improvements over the aTAM in its
ability to efficiently build thin rectangles. Finally, we present a series of
results which prove that the temperature-2 aTAM and temperature-1 DaTAM have
mutually exclusive powers. That is, each is able to self-assemble shapes that
the other can't, and each has systems which cannot be simulated by the other.
Beyond being of purely theoretical interest, these results have practical
motivation as duples have already proven to be useful in laboratory
implementations of DNA-based tiles
A Persistent Disk Wind in GRS 1915+105 with NICER
The bright, erratic black hole X-ray binary GRS 1915+105 has long been a
target for studies of disk instabilities, radio/infrared jets, and accretion
disk winds, with implications that often apply to sources that do not exhibit
its exotic X-ray variability. With the launch of NICER, we have a new
opportunity to study the disk wind in GRS 1915+105 and its variability on short
and long timescales. Here we present our analysis of 39 NICER observations of
GRS 1915+105 collected during five months of the mission data validation and
verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the
detection of strong Fe XXVI in 32 (>80%) of these observations, with another
four marginal detections; Fe XXV is less common, but both likely arise in the
well-known disk wind. We explore how the properties of this wind depends on
broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio,
and fractional RMS variability. The trends with count rate and RMS are
consistent with an average wind column density that is fairly steady between
observations but varies rapidly with the source on timescales of seconds. The
line dependence on spectral hardness echoes known behavior of disk winds in
outbursts of Galactic black holes; these results clearly indicate that NICER is
a powerful tool for studying black hole winds.Comment: Accepted for publication in ApJL. Comments welcom
Systems with Multiplicative Noise: Critical Behavior from KPZ Equation and Numerics
We show that certain critical exponents of systems with multiplicative noise
can be obtained from exponents of the KPZ equation. Numerical simulations in 1d
confirm this prediction, and yield other exponents of the multiplicative noise
problem. The numerics also verify an earlier prediction of the divergence of
the susceptibility over an entire range of control parameter values, and show
that the exponent governing the divergence in this range varies continuously
with control parameter.Comment: Four pages (In Revtex format) with 4 figures (in Postcript
High-fidelity simulations of CdTe vapor deposition from a new bond-order potential-based molecular dynamics method
CdTe has been a special semiconductor for constructing the lowest-cost solar
cells and the CdTe-based Cd1-xZnxTe alloy has been the leading semiconductor
for radiation detection applications. The performance currently achieved for
the materials, however, is still far below the theoretical expectations. This
is because the property-limiting nanoscale defects that are easily formed
during the growth of CdTe crystals are difficult to explore in experiments.
Here we demonstrate the capability of a bond order potential-based molecular
dynamics method for predicting the crystalline growth of CdTe films during
vapor deposition simulations. Such a method may begin to enable defects
generated during vapor deposition of CdTe crystals to be accurately explored
- …