20,956 research outputs found

    Bright and dark breathers in Fermi-Pasta-Ulam lattices

    Get PDF
    In this paper we study the existence and linear stability of bright and dark breathers in one-dimensional FPU lattices. On the one hand, we test the range of validity of a recent breathers existence proof [G. James, {\em C. R. Acad. Sci. Paris}, 332, Ser. 1, pp. 581 (2001)] using numerical computations. Approximate analytical expressions for small amplitude bright and dark breathers are found to fit very well exact numerical solutions even far from the top of the phonon band. On the other hand, we study numerically large amplitude breathers non predicted in the above cited reference. In particular, for a class of asymmetric FPU potentials we find an energy threshold for the existence of exact discrete breathers, which is a relatively unexplored phenomenon in one-dimensional lattices. Bright and dark breathers superposed on a uniformly stressed static configuration are also investigated.Comment: 11 pages, 16 figure

    Complex Scalar DM in a B-L Model

    Full text link
    In this work, we implement a complex scalar Dark Matter (DM) candidate in a U(1)BLU(1)_{B-L} gauge extension of the Standard Model. The model contains three right handed neutrinos with different quantum numbers and a rich scalar sector, with extra doublets and singlets. In principle, these extra scalars can have VEVs (VΦV_{\Phi} and VϕV_{\phi} for the extra doublets and singlets, respectively) belonging to different energy scales. In the context of ζVΦVϕ1\zeta\equiv\frac{V_{\Phi}}{V_{\phi}}\ll1, which allows to obtain naturally light active neutrino masses and mixing compatible with neutrino experiments, the DM candidate arises by imposing a Z2Z_{2} symmetry on a given complex singlet, ϕ2\phi_{2}, in order to make it stable. After doing a study of the scalar potential and the gauge sector, we obtain all the DM dominant processes concerning the relic abundance and direct detection. Then, for a representative set of parameters, we found that a complex DM with mass around 200200 GeV, for example, is compatible with the current experimental constraints without resorting to resonances. However, additional compatible solutions with heavier masses can be found in vicinities of resonances. Finally, we address the issue of having a light CP-odd scalar in the model showing that it is safe concerning the Higgs and the ZμZ_{\mu} boson invisible decay widths, and also the energy loss in stars astrophysical constraints.Comment: 20 pages, 3 figure

    Kink stability, propagation, and length scale competition in the periodically modulated sine-Gordon equation

    Get PDF
    We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and related nonlinear problems in four directions. First, we present the results of a numerical simulation program which are not compatible with the existence of a radiative threshold, predicted by earlier calculations. Second, we carry out a perturbative calculation which helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it accurately reproduces the observed kink dynamics. Fourth, we report on a novel occurrence of length scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.Comment: 19 pages, REVTeX 3.0, 24 figures available from A S o

    Collective Coordinates Theory for Discrete Soliton Ratchets in the sine-Gordon Model

    Get PDF
    A collective coordinate theory is develop for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete non-linear equation. The evolution of these two collective coordinates, obtained by means of the Generalized Travelling Wave Method, explains the mechanism underlying the soliton ratchet and captures qualitatively all the main features of this phenomenon. The theory accounts for the existence of a non-zero depinning threshold, the non-sinusoidal behaviour of the average velocity as a function of the difference phase between the harmonics of the driver, the non-monotonic dependence of the average velocity on the damping and the existence of non-transporting regimes beyond the depinning threshold. In particular it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space

    TELEPENSOUTH project: Measurement of the Earth gravitomagnetic field in a terrestrial laboratory

    Full text link
    We will expose a preliminary study on the feasibility of an experiment leading to a direct measurement of the gravitomagnetic field generated by the rotational motion of the Earth. This measurement would be achieved by means of an appropriate coupling of a TELEscope and a Foucault PENdulum in a laboratory on ground, preferably at the SOUTH pole. An experiment of this kind was firstly proposed by Braginski, Polnarev and Thorne, 18 years ago, but it was never re-analyzed.Comment: 7 pages, LaTeX, Springer style files included. Contribution to the Proceedings of the Spanish Relativity Meeting-ERE-2001 (Madrid, September 2001). To appear in the book "Relativistic Astrophysics", Lecture Notes in Physics, Springer Verlag (2002), edited by L. Fernandez-Jambrina, L.M. Gonzalez-Romer

    The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey

    Full text link
    We analysed the optical spectra of HII regions extracted from a sample of 350 galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine HII-CHI-mistry, which, according to P\'erez-Montero (2014), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [NII] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances. The analysis of the radial distribution both for O/H and N/O in the non-interacting galaxies reveals that both average slopes are negative, but a non-negligible fraction of objects have a flat or even a positive gradient (at least 10\% for O/H and 4\% for N/O). The slopes normalised to the effective radius appear to have a slight dependence on the total stellar mass and the morphological type, as late low-mass objects tend to have flatter slopes. No clear relation is found, however, to explain the presence of inverted gradients in this sample, and there is no dependence between the average slopes and the presence of a bar. The relation between the resulting O/H and N/O linear fittings at the effective radius is much tighter (correlation coefficient ρs\rho_s = 0.80) than between O/H and N/O slopes (ρs\rho_s = 0.39) or for O/H and N/O in the individual \hii\ regions (ρs\rho_s = 0.37). These O/H and N/O values at the effective radius also correlate very tightly (less than 0.03 dex of dispersion) with total luminosity and stellar mass. The relation with other integrated properties, such as star formation rate, colour, or morphology, can be understood only in light of the found relation with mass.Comment: Accepted for publication in A&A. 20 pages, 19 figure

    Semiclassical and Quantum Black Holes and their Evaporation, de Sitter and Anti-de Sitter Regimes, Gravitational and String Phase Transitions

    Full text link
    An effective string theory in physically relevant cosmological and black hole space times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square root branch point singularity in any space time dimensions. This is of the type of the de Vega - Sanchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For dSdS background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition.(iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in non-thermal pure quantum radiation (no information loss).(vi) New lower string bounds are given for the Kerr-Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical-quantum (wave-particle) duality, which is universal irrespective of any symmetry or isommetry of the space-time and of the number or the kind of space-time dimensions.Comment: review paper, no figures. to appear in Int Jour Mod Phys
    corecore