35,702 research outputs found

    Screened Perturbation Theory to Three Loops

    Full text link
    The thermal physics of a massless scalar field with a phi^4 interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast to the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.Comment: 30 pages, 10 figure

    GMOR-like relation in IR-conformal gauge theories

    Full text link
    A generalization of the GMOR relation to the case of infrared-conformal gauge theories is discussed. The starting point is the chiral Ward identity connecting the isovector pseudoscalar susceptibility to the chiral condensate, in a mass-deformed theory. A renormalization-group analysis shows that the pseudoscalar susceptibility is not saturated by the lightest state, but a contribution from the continuum part of the spectrum survives in the chiral limit. The computation also shows how infrared-conformal gauge theories behave differently, depending on whether the anomalous dimension of the chiral condensate be smaller or larger than 1.Comment: 28 pages, 1 PDF figur

    Adapting the interior point method for the solution of LPs on serial, coarse grain parallel and massively parallel computers

    Get PDF
    In this paper we describe a unified scheme for implementing an interior point algorithm (IPM) over a range of computer architectures. In the inner iteration of the IPM a search direction is computed using Newton's method. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system, and the design of data structures to take advantage of serial, coarse grain parallel and massively parallel computer architectures, are considered in detail. We put forward arguments as to why integration of the system within a sparse simplex solver is important and outline how the system is designed to achieve this integration

    Discovery of Broad Molecular lines and of Shocked Molecular Hydrogen from the Supernova Remnant G357.7+0.3: HHSMT, APEX, Spitzer and SOFIA Observations

    Full text link
    We report a discovery of shocked gas from the supernova remnant (SNR) G357.7+0.3. Our millimeter and submillimeter observations reveal broad molecular lines of CO(2-1), CO(3-2), CO(4-3), 13CO (2-1) and 13CO (3-2), HCO^+ and HCN using HHSMT, Arizona 12-Meter Telescope, APEX and MOPRA Telescope. The widths of the broad lines are 15-30 kms, and the detection of such broad lines is unambiguous, dynamic evidence showing that the SNR G357.7+0.3 is interacting with molecular clouds. The broad lines appear in extended regions (>4.5'x5'). We also present detection of shocked H2 emission in mid-infrared but lacking ionic lines using the Spitzer IRS observations to map a few arcmin area. The H2 excitation diagram shows a best-fit with a two-temperature LTE model with the temperatures of ~200 and 660 K. We observed [C II] at 158um and high-J CO(11-10) with the GREAT on SOFIA. The GREAT spectrum of [C II], a 3 sigma detection, shows a broad line profile with a width of 15.7 km/s that is similar to those of broad CO molecular lines. The line width of [C~II] implies that ionic lines can come from a low-velocity C-shock. Comparison of H2 emission with shock models shows that a combination of two C-shock models is favored over a combination of C- and J-shocks or a single shock. We estimate the CO density, column density, and temperature using a RADEX model. The best-fit model with n(H2) = 1.7x10^{4} cm^{-3}, N(CO) = 5.6x10^{16} cm^{-2}, and T = 75 K can reproduce the observed millimeter CO brightnesses.Comment: 19 pages, 22 figure

    Solution to the 3-Loop Φ\Phi-Derivable Approximation for Massless Scalar Thermodynamics

    Get PDF
    We develop a systematic method for solving the 3-loop Φ\Phi-derivable approximation to the thermodynamics of the massless ϕ4\phi^4 field theory. The method involves expanding sum-integrals in powers of g2g^2 and m/T, where g is the coupling constant, m is a variational mass parameter, and T is the temperature. The problem is reduced to one with the single variational parameter m by solving the variational equations order-by-order in g2g^2 and m/T. At the variational point, there are ultraviolet divergences of order g6g^6 that cannot be removed by any renormalization of the coupling constant. We define a finite thermodynamic potential by truncating at 5th5^{th} order in g and m/T. The associated thermodynamic functions seem to be perturbatively stable and insensitive to variations in the renormalization scale.Comment: 57 pages, 10 figure

    Does money matter in inflation forecasting?.

    Get PDF
    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation

    Integrated parylene-cabled silicon probes for neural prosthetics

    Get PDF
    Recent advances in the field of neural prosthetics have demonstrated the thought control of a computer cursor. This capability relies primarily on electrode array surgically implanted into the brain as an acquisition source of neural activity. Various technologies have been developed for signal extraction; however most suffer from either fragile electrode shanks and bulky cables or inefficient use of surgical site areas. Here we present a design and initial testing results from high electrode density, silicon based arrays system with an integrated parylene cable. The greatly reduced flexible rigidity of the parylene cable is believed to relief possible mechanical damages due to relative motion between a brain and its skull

    Robustness of baryon-strangeness correlation and related ratios of susceptibilities

    Get PDF
    Using quenched lattice QCD simulations we investigate the continuum limit of baryon-strangeness correlation and other related conserved charge-flavour correlations for temperatures T_c<T\le2T_c. By working with lattices having large temporal extents (N_\tau=12, 10, 8, 4) we find that these quantities are almost independent of the lattice spacing, i.e, robust. We also find that these quantities have very mild dependence on the sea quark mass and acquire values which are very close to their respective ideal gas limits. Our results also confirm robustness of the Wroblewski parameter.Comment: Published versio

    Exobiology on Mars

    Get PDF
    Descriptions of several instrument concepts that were generated during a workshop entitled, Exobiology Instrument Concepts for a Soviet Mars 94/94 Mission, held at NASA Ames Research Center in 1989 are presented. The objective was to define and describe instrument concepts for exobiology and related science that would be compatible with the mission types under discussion for the 1994 and 1996 Soviet Mars missions. Experiments that use existing technology were emphasized. The concepts discussed could also be used on U.S. missions that follow Mars Observer

    Forward jets and forward WW-boson production at hadron colliders

    Get PDF
    In this talk we give a short review of forward jets and forward WW-boson production at hadron colliders, in view of the extraction of footprints of BFKL physics. We argue that at Tevatron energies, dijet production at large rapidity intervals is still subasymptotic with respect to the BFKL regime, thus the cross section is strongly dependent on the various cuts applied in the experimental setup. In addition, the choice of equal transverse momentum cuts on the tagging jets makes the cross section dependent on large logarithms of non-BFKL origin, and thus may spoil the BFKL analysis. For vector boson production in association with two jets, we argue that the configurations that are kinematically favoured tend to have the vector boson forward in rapidity. Thus W+2W + 2 jet production lends itself naturally to extensions to the high-energy limit.Comment: LaTeX, JHEP style, 10 pages, 3 figures. Based on a talk at EPS2001, Budapest, Hungar
    corecore