412 research outputs found

    Fictitious Calculi and Human Calculi with Foreign Nuclei

    Get PDF
    The correlative approach employing polarized light microscopy, x-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and energy dispersive x-ray microanalysis proves to be very useful in identifying fictitious calculi and genuine human calculi with foreign body nuclei. The common artifacts as reported in the literature and observed also by us were minerals, vegetable and plant seeds, cereals, sand grains and sea shell fragments. Two interesting cases involving foreign body nuclei have been reported: one urinary calculus containing a piece of plastic-coated titanium foil in the center; one nasal calculus with a nut as a nucleus. Another common cause for foreign body nucleation is iatrogenic: intrauterine devices, catheters, suture materials and even surgical staples have been reported in the literature to be potent nidi for calculus formation. These cases remind us of the important fact that our body fluids are supersaturated with respect to calcium phosphates and occasionally to other compounds. Hydroxyapatite crystals are readily nucleated by foreign bodies. Whitlockite is involved if the fluid Mg/Ca ratio is in a suitable range, brushite if the fluid is acidic and struvite if there is urea-splitting infection. In urine and other fluids, calcium oxalate and uric acid crystals contribute to the calculus growth

    An Ultrasonically Actuated Fine-Needle Creates Cavitation in Bovine Liver

    Full text link
    Ultrasonic cavitation is being used in medical applications as a way to influence matter, such as tissue or drug vehicles, on a micro-scale. Oscillating or collapsing cavitation bubbles provide transient mechanical force fields, which can, e.g., fractionate soft tissue or even disintegrate solid objects such as calculi. Our recent study demonstrates that an ultrasonically actuated medical needle can create cavitation phenomena inside water. However, the presence and behavior of cavitation and related bioeffects in diagnostic and therapeutic applications with ultrasonically actuated needles are not known. Using simulations, we demonstrate numerically and experimentally the cavitation phenomena near ultrasonically actuated needles. We define the cavitation onset within a liver tissue model with different total acoustic power levels. We directly visualize and quantitatively characterize cavitation events generated by the ultrasonic needle in thin fresh bovine liver sections enabled by high speed imaging. On a qualitative basis, the numerical and experimental results show a close resemblance in threshold and spatial distribution of cavitation. These findings are crucial for developing new methods and technologies employing ultrasonically actuated fine-needles such as ultrasound-enhanced fine-needle biopsy, drug delivery and histotripsy.Comment: 35 pages, 6 figures, under consideration at The Journal of the Acoustical Society of Americ

    An Ultrasonically Actuated Needle Promotes the Transport of Nanoparticles and Fluids

    Full text link
    Non-invasive therapeutic ultrasound methods, such as high-intensity focused ultrasound (HIFU), have limited access to tissue targets shadowed by bones or presence of gas. This study demonstrates that an ultrasonically actuated medical needle can be used to translate nanoparticles and fluids under the action of nonlinear phenomena, potentially overcoming some limitations of HIFU. A simulation study was first conducted to study the delivery of a tracer with an ultrasonically actuated needle (33 kHz) inside a porous medium acting as a model for soft tissue. The model was then validated experimentally in different concentrations of agarose gel showing a close match with the experimental results, when diluted soot nanoparticles (diameter < 150 nm) were employed as delivered entity. An additional simulation study demonstrated a threefold increase of the volume covered by the delivered agent in liver under a constant injection rate, when compared to without ultrasound. This method, if developed to its full potential, could serve as a cost effective way to improve safety and efficacy of drug therapies by maximizing the concentration of delivered entities within e.g. a small lesion, while minimizing exposure outside the lesion.Comment: 34 pages, 4 figures, under review in the Journal of the Acoustical Society of Americ

    Prevention of recurrent sudden cardiac arrest: role of provocative electropharmacologic testing

    Get PDF
    This study evaluates the usefulness of serial provocative electropharmacologic testing for predicting the efficacy of prophylactic antiarrhythmic treatment regimens in patients resuscitated from sudden cardiac arrest in the absence of acute myocardial infarction. Testing was carried out in 34 consecutive patients (28 men and 6 women) who required cardiopulmonary resuscitation and direct current countershock for treatment of primary ventricular fibrillation (28 patients), ventricular tachycardia (5 patients) or excessively rapid heart rate during atrial fibrillation with preexcitation (1 patient).In 8 (24%) of the 34 patients, drug testing either was not feasible because of absence of inducible arrhythmia or was incomplete because of patient withdrawal from study; and 3 of these 8 patients had recurrent sudden cardiac arrest within 10 to 19 months. In an additional five patients, treatment regimens failed to prevent initiation of sustained ventricular tachyarrhythmias in the catheterization laboratory, and two of these five patients had cardiac arrest recurrences within 2 weeks to 25 months of follow-up. In the remaining 21 (62%) of the 34 patients, including 3 patients with preexcitation syndrome, a drug regimen or surgical treatment, or both, was found that prevented inducible life-threatening tachyarrhythmias in the laboratory. Subsequently, only 1 (5%) of these 21 patients died suddenly within a 7 to 38 month (mean ± standard deviation, 18 ± 8.3) follow-up period. Thus, provocative electropharmacologic testing appears to be useful in predicting response to therapy in survivors of sudden cardiac arrest

    Ultrasonic actuation of a fine-needle improves biopsy yield

    Get PDF
    Despite the ubiquitous use over the past 150 years, the functions of the current medical needle are facilitated only by mechanical shear and cutting by the needle tip, i.e. the lancet. In this study, we demonstrate how nonlinear ultrasonics (NLU) extends the functionality of the medical needle far beyond its present capability. The NLU actions were found to be localized to the proximity of the needle tip, the SonoLancet, but the effects extend to several millimeters from the physical needle boundary. The observed nonlinear phenomena, transient cavitation, fluid streams, translation of micro- and nanoparticles and atomization, were quantitatively characterized. In the fine-needle biopsy application, the SonoLancet contributed to obtaining tissue cores with an increase in tissue yield by 3-6x in different tissue types compared to conventional needle biopsy technique using the same 21G needle. In conclusion, the SonoLancet could be of interest to several other medical applications, including drug or gene delivery, cell modulation, and minimally invasive surgical procedures.Peer reviewe

    Early stages of ramified growth in quasi-two-dimensional electrochemical deposition

    Full text link
    I have measured the early stages of the growth of branched metal aggregates formed by electrochemical deposition in very thin layers. The growth rate of spatial Fourier modes is described qualitatively by the results of a linear stability analysis [D.P. Barkey, R.H. Muller, and C.W. Tobias, J. Electrochem. Soc. {\bf 136}, 2207 (1989)]. The maximum growth rate is proportional to (I/c)δ(I/c)^\delta where II is the current through the electrochemical cell, cc the electrolyte concentration, and δ=1.37±0.08\delta = 1.37 \pm 0.08. Differences between my results and the theoretical predictions suggest that electroconvection in the electrolyte has a large influence on the instability leading to ramified growth.Comment: REVTeX, four ps figure

    Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography

    Get PDF
    Contrast-enhanced micro-computed tomography (CE mu CT) with phosphotungstic acid (PTA) has shown potential for detecting collagen distribution of articular cartilage. However, the selectivity of the PTA staining to articular cartilage constituents remains to be elucidated. The aim of this study was to investigate the dependence of PTA for the collagen content in bovine articular cartilage. Adjacent bovine articular cartilage samples were treated with chondroitinase ABC and collagenase to degrade the proteoglycan and the collagen constituents in articular cartilage, respectively. Enzymatically degraded samples were compared to the untreated samples using CE mu CT and reference methods, such as Fourier-transform infrared imaging. Decrease in the X-ray attenuation of PTA in articular cartilage and collagen content was observed in cartilage depth of 0-13% and deeper in tissue after collagen degradation. Increase in the X-ray attenuation of PTA was observed in the cartilage depth of 13- 39% after proteoglycan degradation. The X-ray attenuation of PTA-labelled articular cartilage in CE mu CT is associated mainly with collagen content but the proteoglycans have a minor effect on the X-ray attenuation of the PTA-labelled articular cartilage. In conclusion, the PTA labeling provides a feasible CE mu CT method for 3D characterization of articular cartilage.Peer reviewe

    Determining collagen distribution in articular cartilage using contrast-enhanced micro-computed tomography

    Get PDF
    Objective: Collagen distribution within articular cartilage (AC) is typically evaluated from histological sections, e.g., using collagen staining and light microscopy (LM). Unfortunately, all techniques based on histological sections are time-consuming, destructive, and without extraordinary effort, limited to two dimensions. This study investigates whether phosphotungstic acid (PTA) and phosphomolybdic acid (PMA), two collagen-specific markers and X-ray absorbers, could (1) produce contrast for AC X-ray imaging or (2) be used to detect collagen distribution within AC. Method: We labeled equine AC samples with PTA or PMA and imaged them with micro-computed tomography (micro-CT) at pre-defined time points 0, 18, 36, 54, 72, 90, 180, 270 h during staining. The micro-CT image intensity was compared with collagen distributions obtained with a reference technique, i.e., Fourier-transform infrared imaging (FTIRI). The labeling time and contrast agent producing highest association (Pearson correlation, BlandeAltman analysis) between FTIRI collagen distribution and micro-CT -determined PTA distribution was selected for human AC. Results: Both, PTA and PMA labeling permitted visualization of AC features using micro-CT in non-calcified cartilage. After labeling the samples for 36 h in PTA, the spatial distribution of X-ray attenuation correlated highly with the collagen distribution determined by FTIRI in both equine (mean +/- S.D. of the Pearson correlation coefficients, r = 0.96 +/- 0.03, n = 12) and human AC (r = 0.82 +/- 0.15, n = 4). Conclusions: PTA-induced X-ray attenuation is a potential marker for non-destructive detection of AC collagen distributions in 3D. This approach opens new possibilities in development of non-destructive 3D histopathological techniques for characterization of OA. (C) 2015 The Authors. Published by Elsevier Ltd and Osteoarthritis Research Society International.Peer reviewe

    Delivery of Agents Into Articular Cartilage With Electric Spark-Induced Sound Waves

    Get PDF
    Localized delivery of drugs into articular cartilage (AC) may facilitate the development of novel therapies to treat osteoarthritis (OA). We investigated the potential of spark-gap-generated sound to deliver a drug surrogate, i.e., methylene blue (MB), into AC. In vitro experiments exposed bovine AC samples to either simultaneous sonication and immersion in MB (Treatment 1; n = 10), immersion in MB after sonication (Control 1; n = 10), solely immersion in MB (Control 2; n = 10), or neither sonication nor immersion in MB (Control 3; n = 10). The sonication protocol consisted of 1,000 spark-gap -generated pulses. Delivery of MB into AC was estimated from optical absorbance in transmission light microscopy. Optical absorbance was significantly greater in the treatment group up to 900 μm depth from AC surface as compared to all controls. Field emission scanning electron microscopy (FESEM), histological analysis, and digital densitometry (DD) of sonicated (n = 6) and non-sonicated (n = 6) samples showed no evidence of sonication-induced changes in proteoglycan content or collagen structure. Consequently, spark-gap -generated sound may offer a solution for localized drug delivery into AC in a non-destructive fashion. Further research on this method may contribute to OA drug therapies

    Russell Ackoff

    Get PDF
    Russell Ackoff (usually known as ‘Russ’) was a pioneer of the application of systems approaches to management, both through theoretical developments and through a deep and practical engagement with many different organisations. He was a strong advocate of the need for systems approaches to take full account of the complexity of inter-related problems and not simply to present glib technical solutions
    • …
    corecore