176 research outputs found

    Regulation of surface architecture by symbiotic bacteria mediates host colonization

    Get PDF
    Microbes occupy countless ecological niches in nature. Sometimes these environments may be on or within another organism, as is the case in both microbial infections and symbiosis of mammals. Unlike pathogens that establish opportunistic infections, hundreds of human commensal bacterial species establish a lifelong cohabitation with their hosts. Although many virulence factors of infectious bacteria have been described, the molecular mechanisms used during beneficial host–symbiont colonization remain almost entirely unknown. The novel identification of multiple surface polysaccharides in the important human symbiont Bacteroides fragilis raised the critical question of how these molecules contribute to commensalism. To understand the function of the bacterial capsule during symbiotic colonization of mammals, we generated B. fragilis strains deleted in the global regulator of polysaccharide expression and isolated mutants with defects in capsule expression. Surprisingly, attempts to completely eliminate capsule production are not tolerated by the microorganism, which displays growth deficits and subsequent reversion to express capsular polysaccharides. We identify an alternative pathway by which B. fragilis is able to reestablish capsule production and modulate expression of surface structures. Most importantly, mutants expressing single, defined surface polysaccharides are defective for intestinal colonization compared with bacteria expressing a complete polysaccharide repertoire. Restoring the expression of multiple capsular polysaccharides rescues the inability of mutants to compete for commensalism. These findings suggest a model whereby display of multiple capsular polysaccharides provides essential functions for bacterial colonization during host–symbiont mutualism

    The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides

    Get PDF
    The actions of polymyxin B, rabbit polymorphonuclear lysosome extracts, 14 polycationic peptides (including defensin NP-2, cecropin P1, lactoferricin B, and active peptides from cationic protein 18 and bactenecin), EDTA, and Tris on Brucella spp. were studied, with other gram-negative bacteria as controls. Brucella spp. were comparatively resistant to all of the agents listed above and bound less polymyxin B, and their outer membranes (OMs) were neither morphologically altered nor permeabilized to lysozyme by polymyxin B concentrations, although both effects were observed for controls. EDTA and peptides increased or accelerated the partition of the hydrophobic probe N-phenyl-naphthylamine into Escherichia coli and Haemophilus influenzae OMs but had no effect on Brucella OMs. Since Brucella and H. influenzae OMs are permeable to hydrophobic compounds (G. Martínez de Tejada and I. Moriyón, J. Bacteriol. 175:5273-5275, 1993), the results show that such unusual permeability is not necessarily related to resistance to polycations. Although rough (R) B. abortus and B. ovis were more resistant than the controls were, there were qualitative and quantitative differences with smooth (S) brucellae; this may explain known host range and virulence differences. Brucella S-lipopolysaccharides (LPSs) had reduced affinities for polycations, and insertion of Brucella and Salmonella montevideo S-LPSs into the OM of a Brucella R-LPS mutant increased and decreased, respectively, its resistance to cationic peptides. The results show that the core lipid A of Brucella LPS plays a major role in polycation resistance and that O-chain density also contributes significantly. It is proposed that the features described above contribute to Brucella resistance to the oxygen-independent systems of phagocytes

    Septins Regulate Bacterial Entry into Host Cells

    Get PDF
    Background: Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB. Methodology/Principal Findings: Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET. Conclusions/Significance: Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin an

    Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts

    Get PDF
    A rough (R) Brucella abortus 45/20 mutant was more sensitive to the bactericidal activity of polymyxin B and lactoferricin B than was its smooth (S) counterpart but considerably more resistant than Salmonella montevideo. The outer membrane (OM) and isolated lipopolysaccharide (LPS) of S. montevideo showed a higher affinity for these cationic peptides than did the corresponding B. abortus OM and LPS. We took advantage of the moderate sensitivity of R B. abortus to cationic peptides to construct live R B. abortus-S-LPS chimeras to test the activities of polymyxin B, lactoferricin B, and EDTA. Homogeneous and abundant peripheral distribution of the heterologous S-LPS was observed on the surface of the chimeras, and this coating had no effect on the viability or morphology of the cells. When the heterologous LPS corresponded to the less sensitive bacterium S B. abortus S19, the chimeras were more resistant to cationic peptides; in contrast, when the S-LPS was from the more sensitive bacterium S. montevideo, the chimeras were more susceptible to the action of peptides and EDTA. A direct correlation between the amount of heterologous S-LPS on the surface of chimeric Brucella cells and peptide sensitivity was observed. Whereas the damage produced by polymyxin B in S. montevideo and B. abortus-S. montevideo S-LPS chimeras was manifested mainly as OM blebbing and inner membrane rolling, lactoferricin B caused inner membrane detachment, vacuolization, and the formation of internal electron-dense granules in these cells. Native S and R B. abortus strains were permeable to the hydrophobic probe N-phenyl-1-naphthylamine (NPN). In contrast, only reduced amounts of NPN partitioned into the OMs of the S. montevideo and B. abortus-S. montevideo S-LPS chimeras. Following peptide exposure, accelerated NPN uptake similar to that observed for S. montevideo was detected for the B. abortus-S. montevideo LPS chimeras. The partition of NPN into native or EDTA-, polymyxin B-, or lactoferricin B-treated LPS micelles of S. montevideo or B. abortus mimicked the effects observed with intact cells, and this was confirmed by using micelle hybrids of B. abortus and S. montevideo LPSs. The results showed that LPS is the main cause of B. abortus' resistance to bactericidal cationic peptides, the OM-disturbing action of divalent cationic chelants, and OM permeability to hydrophobic substances. It is proposed that these three features are related to the ability of Brucella bacteria to multiply within phagocytes

    The Human Fungal Pathogen Cryptococcus neoformans Escapes Macrophages by a Phagosome Emptying Mechanism That Is Inhibited by Arp2/3 Complex-Mediated Actin Polymerisation

    Get PDF
    The lysis of infected cells by disease-causing microorganisms is an efficient but risky strategy for disseminated infection, as it exposes the pathogen to the full repertoire of the host's immune system. Cryptococcus neoformans is a widespread fungal pathogen that causes a fatal meningitis in HIV and other immunocompromised patients. Following intracellular growth, cryptococci are able to escape their host cells by a non-lytic expulsive mechanism that may contribute to the invasion of the central nervous system. Non-lytic escape is also exhibited by some bacterial pathogens and is likely to facilitate long-term avoidance of the host immune system during latency. Here we show that phagosomes containing intracellular cryptococci undergo repeated cycles of actin polymerisation. These actin ‘flashes’ occur in both murine and human macrophages and are dependent on classical WASP-Arp2/3 complex mediated actin filament nucleation. Three dimensional confocal imaging time lapse revealed that such flashes are highly dynamic actin cages that form around the phagosome. Using fluorescent dextran as a phagosome membrane integrity probe, we find that the non-lytic expulsion of Cryptococcus occurs through fusion of the phagosome and plasma membranes and that, prior to expulsion, 95% of phagosomes become permeabilised, an event that is immediately followed by an actin flash. By using pharmacological agents to modulate both actin dynamics and upstream signalling events, we show that flash occurrence is inversely related to cryptococcal expulsion, suggesting that flashes may act to temporarily inhibit expulsion from infected phagocytes. In conclusion, our data reveal the existence of a novel actin-dependent process on phagosomes containing cryptococci that acts as a potential block to expulsion of Cryptococcus and may have significant implications for the dissemination of, and CNS invasion by, this organism.\ud \u

    Intracellular trafficking and replication of Burkholderia cenocepacia in human cystic fibrosis airway epithelial cells

    Full text link
    We investigated the trafficking of Burkholderia cenocepacia , an opportunistic respiratory pathogen of persons with cystic fibrosis (CF), in immortalized CF airway epithelial cells in vitro . Our results indicate that bacteria enter cells in a process involving actin rearrangement. Whereas both live and heat-killed bacteria reside transiently in early endosomes, only live bacteria escape from late endosomes to colocalize in vesicles positive for lysosomal membrane marker LAMP1, endoplasmic reticulum (ER) membrane marker calnexin, and autophagosome marker monodansylcadavarine (MDC). Twenty-four hours after infection, microcolonies of live bacteria were observed in the perinuclear area colocalizing with calnexin. In contrast, after ingestion, dead bacteria colocalized with late endosome marker Rab7, and lysosome markers LAMP1 and cathepsin D, but not with calnexin or MDC. Six to eight hours after ingestion of dead bacteria, degraded bacterial particles were observed in the cytoplasm and in vesicles positive for cathepsin D. These results indicate that live B. cenocepacia gain entry into human CF airway cells by endocytosis, escape from late endosomes to enter autophagosomes that fail to fuse with mature lysosomes, and undergo replication in the ER. This survival and replication strategy may contribute to the capacity of B. cenocepacia to persist in the lungs of infected CF patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75744/1/j.1462-5822.2006.00724.x.pd

    The outer membrane of Brucella ovis shows increased permeability to hydrophobic probes and is more susceptible to cationic peptides than are the outer membranes of mutant rough Brucella abortus strains

    Get PDF
    The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells

    The Glyceraldehyde-3-Phosphate Dehydrogenase and the Small GTPase Rab 2 Are Crucial for Brucella Replication

    Get PDF
    The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells

    Location of Pathogenic Bacteria during Persistent Infections: Insights from an Analysis Using Game Theory

    Get PDF
    Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies
    corecore