23 research outputs found
Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20â˛N : ODP Hole 1274A
Author Posting. Š The Authors, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 153 (2007): 303-319, doi:10.1007/s00410-006-0148-6.ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual
clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (~0.5), suggesting high degree of partial
melting (>20%). Detailed studies of their microstructures show that they have extensively
reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to
crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least
reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel
field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that
the intergranular melt was generated by no more than 12% melting of a MORB mantle or by
more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains,
characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support
the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted
in REE, Zr and Ti. A two-stage partial melting/melt-rock reaction history is proposed, in which
initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field)
melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted
compositions were acquired through melt re-equilibration with residual harzburgites.Funding for this
research was provided by Centre National de la Recherche Scientifique-Institut National des
Sciences de lâUnivers (Programme Dynamique et Evolution de la Terre Interne)
Mantle Pb paradoxes : the sulfide solution
Author Posting. Š Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely
contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In
addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt)
are very fast. Given the possibility that sulfide melt âwetsâ sub-solidus mantle silicates,
and has very low viscosity, the implications for Pb behavior during mantle melting are
profound. There is only sparse experimental data relating to Pb partitioning between
sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of
Pb behavior in sulfide may hold the key to several long-standing and important Pb
paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all
known mantle reservoirs lie to the right of the Geochron, with no consensus as to the
identity of the âbalancingâ reservoir. We propose that long-term segregation of sulfide
(containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB
is greater than bulk earth, and constant at a value of 25. The constancy of this âcanonical
ratioâ implies similar partition coefficients for Ce and Pb during magmatic processes
(Hofmann et al. 1986), whereas most experimental studies show that Pb is more
incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during
melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the
sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows
that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus
enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and
Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle
sources for these basalts. Sulfide may play other important roles during magmagenesis:
1). advective/diffusive sulfide networks may form potent metasomatic agents (in both
introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt
networks may easily exchange Pb with ambient mantle sulfides (by diffusion or
assimilation), thus âsamplingâ Pb in isotopically heterogeneous mantle domains
differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an
apparent âde-couplingâ of these systems.Our intemperance
should not be blamed on the support we gratefully acknowledge from NSF: EAR-
0125917 to SRH and OCE-0118198 to GAG
Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites
A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields
Here we develop a lherzolite melting model and explore the effects of variations in mantle composition, pressure, temperature, and H[subscript 2]O content on melt composition. New experiments and a compilation of experimental liquids saturated with all of the mantle minerals (olivine, orthopyroxene, clinopyroxene, plagioclase and/or spinel) are used to calibrate a model that predicts the temperature and major element composition of a broad spectrum of primary basalt types produced under anhydrous to low H[subscript 2]O-content conditions at upper mantle pressures. The model can also be used to calculate the temperature and pressure at which primary magmas were produced in the mantle, as well as to model both near-fractional adiabatic decompression and batch melting. Our experimental compilation locates the pressure interval of the plagioclase to spinel transition on the solidus and shows that it is narrow (âź0.1 GPa) for melting of natural peridotite compositions. The multiple saturation boundaries determined by our model provide a method for assessing the appropriate mineral assemblage, as well as the extent of the fractional crystallization correction required to return a relatively primitive liquid to equilibrium with the mantle source. We demonstrate that an inaccurate fractionation correction can overestimate temperature and depths of melting by hundreds of degrees and tens of kilometers, respectively. This model is particularly well suited to examining the temperature and pressure of origin for intraplate basaltic volcanism and is used to examine the petrogenesis of a suite of Holocene basaltic lavas from Diamond Crater in Oregon's High Lava Plains (HLP).National Science Foundation (U.S.) (Grant EAR-0507486)National Science Foundation (U.S.) (Grant EAR-0538179)National Science Foundation (U.S.) (Grant EAR-1118598