907 research outputs found

    The counterrotating core and the black hole mass of IC1459

    Get PDF
    The E3 giant elliptical galaxy IC1459 is the prototypical galaxy with a fast counterrotating stellar core. We obtained one HST/STIS long-slit spectrum along the major axis of this galaxy and CTIO spectra along five position angles. We present self-consistent three-integral axisymmetric models of the stellar kinematics, obtained with Schwarzschild's numerical orbit superposition method. We study the dynamics of the kinematically decoupled core (KDC) in IC1459 and we find it consists of stars that are well-separated from the rest of the galaxy in phase space. The stars in the KDC counterrotate in a disk on orbits that are close to circular. We estimate that the KDC mass is ~0.5% of the total galaxy mass or ~3*10^9 Msun. We estimate the central black hole mass M_BH of IC1459 independently from both its stellar and its gaseous kinematics. Some complications probably explain why we find rather discrepant BH masses with the different methods. The stellar kinematics suggest that M_BH = (2.6 +/- 1.1)*10^9 Msun (3 sigma error). The gas kinematics suggests that M_BH ~ 3.5*10^8 Msun if the gas is assumed to rotate at the circular velocity in a thin disk. If the observed velocity dispersion of the gas is assumed to be gravitational, then M_BH could be as high as ~1.0*10^9 Msun. These different estimates bracket the value M_BH = (1.1 +/- 0.3)*10^9 Msun predicted by the M_BH-sigma relation. It will be an important goal for future studies to assess the reliability of black hole mass determinations with either technique. This is essential if one wants to interpret the correlation between the BH mass and other global galaxy parameters (e.g. velocity dispersion) and in particular the scatter in these correlations (believed to be only ~0.3 dex). [Abridged]Comment: 51 pages, LaTeX with 19 PostScript figures. Revised version, with three new figures and data tables. To appear in The Astrophysical Journal, 578, 2002 October 2

    New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe

    Get PDF
    The European NDM-1 Survey Participants: Manuela Caniça (Departamento de Doenças Infecciosas do INSA)Acquired carbapenemases confer extensive antibiotic resistance to Enterobacteriaceae and represent a public health threat. A novel acquired carbapenemase, New Delhi metallo-beta-lactamase 1 (NDM-1), has recently been described in the United Kingdom and Sweden, mostly in patients who had received care on the Indian subcontinent. We conducted a survey among 29 European countries (the European Union Member States, Iceland and Norway) to gather information on the spread of NDM-1-producing Enterobacteriaceae in Europe, on public health responses and on available national guidance on detection, surveillance and control. A total of 77 cases were reported from 13 countries from 2008 to 2010. Klebsiella pneumoniae was the most frequently reported species with 54%. Among 55 cases with recorded travel history, 31 had previously travelled or been admitted to a hospital in India or Pakistan and five had been hospitalised in the Balkan region. Possible nosocomial acquisition accounted for 13 of 77 cases. National guidance on NDM-1 detection was available in 14 countries and on NDM-1 control in 11 countries. In conclusion, NDM-1 is spreading across Europe, where it is frequently linked to a history of healthcare abroad, but also to emerging nosocomial transmission. National guidance in response to the threat of carbapenemase-producing Enterobacteriaceae is available in approximately half of the surveyed European countries. Surveillance of carbapenemase- producing Enterobacteriaceae must be enhanced in Europe and effective control measures identified and implemented

    Flux pinning in (1111) iron-pnictide superconducting crystals

    Get PDF
    Local magnetic measurements are used to quantitatively characterize heterogeneity and flux line pinning in PrFeAsO_1-y and NdFeAs(O,F) superconducting single crystals. In spite of spatial fluctuations of the critical current density on the macroscopic scale, it is shown that the major contribution comes from collective pinning of vortex lines by microscopic defects by the mean-free path fluctuation mechanism. The defect density extracted from experiment corresponds to the dopant atom density, which means that dopant atoms play an important role both in vortex pinning and in quasiparticle scattering. In the studied underdoped PrFeAsO_1-y and NdFeAs(O,F) crystals, there is a background of strong pinning, which we attribute to spatial variations of the dopant atom density on the scale of a few dozen to one hundred nm. These variations do not go beyond 5% - we therefore do not find any evidence for coexistence of the superconducting and the antiferromagnetic phase. The critical current density in sub-T fields is characterized by the presence of a peak effect, the location of which in the (B,T)-plane is consistent with an order-disorder transition of the vortex lattice.Comment: 12 pages, submitted to Phys Rev.

    Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365

    Full text link
    We present a flexible and efficient method to construct triaxial dynamical models of galaxies with a central black hole, using Schwarzschild's orbital superposition approach. Our method is general and can deal with realistic luminosity distributions, which project to surface brightness distributions that may show position angle twists and ellipticity variations. The models are fit to measurements of the full line-of-sight velocity distribution (wherever available). We verify that our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model. In a companion paper (van de Ven, de Zeeuw & van den Bosch), we demonstrate that the method recovers the phase-space distribution function. We apply our method to two-dimensional observations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON, and study its internal structure, showing that the observed kinematically decoupled core is not physically distinct from the main body and the inner region is close to oblate axisymmetric.Comment: 21 Pages, 14 (Colour) Figures, Companion paper is arXiv:0712.0309 Accepted to MNRAS. Full resolution version at http://www.strw.leidenuniv.nl/~bosch/papers/RvdBosch_triaxmethod.pd

    SuperMassive Black Holes in Bulges

    Get PDF
    We present spatially extended gas kinematics at parsec-scale resolution for the nuclear regions of four nearby disk galaxies, and model them as rotation of a gas disk in the joint potential of the stellar bulge and a putative central black hole. The targets were selected from a larger set of long-slit spectra obtained with the Hubble Space Telescope as part of the Survey of Nearby Nuclei with STIS (SUNNS). They represents the 4 galaxies (of 24) that display symmetric gas velocity curves consistent with a rotating disk. We derive the stellar mass distribution from the STIS acquisition images adopting the stellar mass-to-light ratio normalized so as to match ground-based velocity dispersion measurements over a large aperture. Subsequently, we constrain the mass of a putative black hole by matching the gas rotation curve, following two distinct approaches. In the most general case we explore all the possible disk orientations, alternatively we constrain the gas disk orientation from the dust-lane morphology at similar radii. In the latter case the kinematic data indicate the presence of a central black hole for three of the four objects, with masses of 10^7 - 10^8 solar masses, representing up to 0.025 % of the host bulge mass. For one object (NGC2787) the kinematic data alone provide clear evidence for the presence of a central black hole even without external constraints on the disk orientation. These results illustrate directly the need to determine black-hole masses by differing methods for a large number of objects, demonstrate that the variance in black hole/bulge mass is much larger than previously claimed, and reinforce the recent finding that the black-hole mass is tightly correlated with the bulge stellar velocity dispersion.Comment: 26 pages, 11 Postscript figures, accepted for publication on Ap

    UGC 7388: a galaxy with two tidal loops

    Full text link
    We present the results of spectroscopic and morphological studies of the galaxy UGC7388 with the 8.1-m Gemini North telescope. Judging by its observed characteristics, UGC7388 is a giant late-type spiral galaxy seen almost edge-on. The main body of the galaxy is surrounded by two faint (\mu(B) ~ 24 and \mu(B) ~ 25.5) extended (~20-30 kpc) loop-like structures. A large-scale rotation of the brighter loop about the main galaxy has been detected. We discuss the assumption that the tidal disruption of a relatively massive companion is observed in the case of UGC7388. A detailed study and modeling of the observed structure of this unique galaxy can give important information about the influence of the absorption of massive companions on the galactic disks and about the structure of the dark halo around UGC7388.Comment: 8 pages, 5 figure
    • 

    corecore