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INTRODUCTION

After years of attempts to generate regular data on bacterial
resistance to antimicrobials using a sustainable methodology,
several surveillance projects now collect and report such data at
the regional, national or international level [1]. These projects
rely mainly on two methodologies, i.e. centralized testing of
isolates or electronic collection of local susceptibility data. On-
going surveillance studies based on centralized testing have the
advantage of providing very comparable susceptibility results
but are costly and lack timeliness. However, with some initial
investment, surveillance systems based on electronic collection
of local data can provide timely results but certainly need
careful evaluation of data through filter checks and external
quality assessment of local susceptibility testing.

Antimicrobial consumption data can be obtained from various
sources such as sales from pharmaceutical companies, pharmacy
purchases, pharmacy issues, prescriptions or chart reviews.
However, unlike resistance data, they are rarely made available
for analysis. For hospitals, they generally consist of consumption
data calculated by the pharmacy for the whole institution or at the
hospitalization unit level. With a few exceptions, data on
antimicrobial use at the patient level are only obtained through
time-limited audits and therefore do not represent surveillance data.

While there has been a growing concern about increasing
bacterial resistance worldwide, access to data concerning
antimicrobial use remains limited, and could explain the small
amount of literature on the relationship between antimicrobial
use and resistance. In this paper, we will review previous attempts
to study this relationship and present the application of time series
analysis to antimicrobial use and resistance surveillance data.
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PRIOR APPROACHES TO UNDERSTANDING THE
RELATIONSHIP BETWEEN ANTIMICROBIAL USE AND
RESISTANCE AND THEIR LIMITATIONS

There is indirect evidence of a relationship between
antimicrobial use and bacterial resistance. The various levels
of evidence for this relationship, which include biological
plausibility, consistent associations, demonstration of a dose—
response relationship and concomitant variations, have been
reviewed in detail by McGowan [2]. However, antimicrobial
use is the major, but not the only, factor determining resistance
in a defined ecologic system such as a hospital, which could
explain why some studies failed to demonstrate a relationship.
Failure to deal with these confounding factors, e.g. use of
antibiotics other than the one studied, noncompliance with
infection control practices, as well as selection biases and
insufficient statistical power, are reasons for the difficulty in
evaluating the impact of antimicrobial use on resistance [3].
Multicenter studies have been implemented to correct for
selection biases and to increase the statistical power of analyses
[4,5]. Unfortunately, these studies only identified associations
or dose—effect relationships between antimicrobial use and
resistance at the group level and did not study variations of’
these two variables over time. Such concomitant variations,
i.e. changes in antimicrobial use followed by changes in
resistance in the same direction, are probably the most
convincing since they take into account the time sequence
between the suspected cause and the observed eftect. They
have been reported from various single hospitals [6—13] or
from single countries [14]. However, pooled data, covering
one or several years, were used to analyse temporal associations
observed between two time periods, which means that these
studies could not measure the delay necessary to observe an
effect of antimicrobial use on resistance. Because data were
only available on a yearly basis, attempts to take this delay into
account empirically considered a 1-year delay. For example, as
shown in Figure 1b, Goossens et al found a correlation
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between the percentage of gentamicin-resistant Gram-negative
bacilli and gentamicin use during the previous year [15].
Interestingly, no correlation was observed when using gentami-
cin use from the same year (Figure 1a). Our experience at
Hospital Vega Baja shows that there is often a 1-year delay, but
not always. For example, as shown in Figure 2, we generally
observed such variations of the percentage of ceftazidime-
resistant Gram-negative bacilli following variations in ceftazi-
dime use, except in 1996 when ceftazidime resistance increased
following a decrease in ceftazidime use in 1995!

Similarly, there have been empiric attempts to take into
consideration the use of several antimicrobials when modelling
the relationship between use and resistance. Segaard made the
assumption that simultaneous occurrence of resistance traits
or co-resistances were the result of the action of several
antimicrobials, and that one should also take into account
fractions of the use of these antimicrobials when studying the
relationship with resistance [13]. He defined the coupling
fraction cfa for an antimicrobial B (to explain resistance to
antimicrobial A) as the percentage of isolates resistant to A that
were also resistant to B. The corrected antimicrobial use
cortDDD, was then calculated using the formula:

cotr DDD, =DDD, + (DDDy; X cfiga) + (DDDe X cfep) + - ..
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Figure 1 Percentage gentamicin-resistant Gram-negative bacilli and
hospital gentamicin use, St Pieters University Hospital, Brussels,
Belgium, 1979-86. Adapted from Goossens et al [15]. (a) Percentage
gentamicin-resistant Gram-negative bacilli and hospital gentamicin use
the same year (no correlation). (b) Percentage gentamicin-resistant
Gram-negative bacilli and hospital gentamicin use the year before
(R=0.90, P < 0.005).

where DDD, is the use of antimicrobial A expressed as a
number of Defined Daily Doses per year, DDDy is the use of
antimicrobial B, cfsa is the coupling fraction for B to explain
resistance to A, etc. Usefulness of the method was later
confirmed by Moller who found a higher degree of correlation
with corrected antimicrobial use using coupling fractions than
with use of a single antimicrobial [11]. Recently, Friedrich
et al analyzed multiple-drug relationships in their hospital and
identified numerous situations where a variation in the use of a
single antimicrobial resulted in changes of susceptibility to
other antimicrobials [16]. Finally, Crowcroft et al used a
multiple linear regression model to show that several classes of
antimicrobials were independent factors explaining a high
percentage of methicillin-resistant Staphylococcus aureus in 50
Belgian hospitals [17].

APPLICATION OF TIME SERIES ANALYSIS TO ANTIMICROBIAL
USE AND RESISTANCE SURVEILLANCE DATA

What is time series analysis?

Time series analysis corresponds to a group of techniques
aimed at adjusting a mathematical model to a series of
observations taken over time, or time series, for the purpose of
predicting future behavior of the series based on its historical
behavior, and trying to explain its characteristics as well as
factors influencing the series. Unlike usual statistical methods
that assume observed data to be realizations of independent
random variables, time series analysis takes into account the
possible relationship existing between consecutive observa-
tions [18]. This method is appropriate when data are measured
repeatedly at equal intervals of time and when these intervals
are much shorter than the period of observation.

In 1976, Box and Jenkins provided a practical method for
modeling time series by use of so-called autoregressive
integrated moving average (ARIMA) models that analyze
the temporal behavior of a variable as a function of its previous
values, its trends and its abrupt changes in the near past [19].
Since then this method has been used in various fields where
data are collected at repeated intervals for long periods of time,
such as econometry, engineering, meteorology and water
resources research. More recently, it has been applied in
medical specialties where such data are collected at the patient
or population level, such as endocrinology, cardiology,
environmental medicine and the study of chronic diseases
[18,20]. Additionally, an extension of this method, called
transfer function, allows the assessment of relationships
between one or several time series [18]. In medicine, transfer
function models have been used to study, for example, the
relationship between weather parameters and mortality [21] or

influenza and mortality [22].
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Is time series analysis relevant to antimicrobial use and resistance
data?

Time series analysis is clearly relevant to the analysis of data
produced by surveillance activity, which consist of repeated
measurements at regular intervals during long periods of time.
Such data, e.g. monthly percentage of antimicrobial-resistant
microorganisms or monthly number defined daily doses of
antimicrobial per 1000 hospitalization days, can be produced
by surveillance of antimicrobial use and resistance activity and
correspond to the definition of time series. Observation of
these time series shows short-term variations of both resistance
and use levels, which could not be shown by using yearly data
(Figures 2—4). Additionally, our experience shows that these
consecutive measurements of resistance levels on the one
hand, and of antimicrobial use on the other hand, are highly
correlated from one period to one or several other periods (J.
M. Lépez-Lozano, unpublished data). This correlation should
not be disregarded and classical statistical methods should not
be used to analyze longitudinal antimicrobial use and resistance
data since these methods necessitate independent observations.
Instead one should make use of methods that take this

correlation into account such as time series analysis.

What is needed to perform time series analysis?

We think that this type of analysis requires a minimum of 60
observations or time intervals, i.e. 15 years of trimester-level
data, 5 years of monthly data or a little more than 1 year of
weekly data. Resistance levels, expressed as a percentage
(number resistant/number tested X 100) or as an incidence
density (number resistant/1000 patient-days) must be calculated
for each of these intervals during the whole period. These data
are generally collected retrospectively to build the first models,
then prospective surveillance is implemented to gather additional
data. Although it would be interesting to use data collected at
very short intervals, e.g. weeks, monthly data are generally
preferred as a compromise between getting a maximum number
of intervals using available data while keeping a sufficient
number of isolates tested in each of these intervals. Additionally,
antimicrobial use data (in g/1000 patient-days or in DDD/1000
patient-days) collected at the same intervals during the same
period of time are needed to analyze the relationship between
antimicrobial use and resistance.

As of now, we identified four software that perform time
series analysis: SPSS Trends™ 10.0 (SPSS Inc., Chicago, IL,
USA), SAS/ETS 6.12 (SAS Institut Inc., Cary, NC, USA),
SCA PC-UTS, PC-Expert and PC-MTS (Scientific Comput-
ing Associates Corp., Chicago, IL, USA) and Eviews 4.0
(Quantitative Micro Software, Irvine, CA, USA). All software

operate in a Microsoft Windows environment; however, some
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procedures must still be performed using the software’s
The SCA modules offer fully
Each

software has its preference regarding the method used for

programming language.

automatized transfer function model construction.

transfer function models, e.g. Haugh for SPSS Trends, Box—
Jenkins for SAS/ETS, and Linear Transfer Function for SCA;
however, SCA modules allow use of each of these methods

when using programming language.

How to build ARIMA and transfer function models

The strategy for constructing an ARIMA model is based on a
three-step iterative cycle of model identification, model
estimation and diagnostic checks on model adequacy as
described by Box and Jenkins [19]. Model identification
consists in choosing a particular model of the ARIMA class
from the observed time series. In some cases, differencing and
other proper transformations, e.g. natural logs, are necessary to
obtain a stationary series, i.e. a series with a constant mean and
a constant variance through time. Once stationariness is
(ACF) and partial
autocorrelations (PACF) are examined to identify autoregres-

achieved, the series autocorrelations
sive (AR) behavior, ie. related to the past values of the
variable of interest, moving average (MA) behavior, i.e. related
to abrupt changes in the near past, or mixed behavior
(ARMA). At a second stage, parameters of the identified
model are estimated by unconditional least squares or by
likelihood functions. Goodness of fit is estimated and the
determination coefficient R? is calculated. This coefficient
corresponds to the percentage of the variance of the observed
time series which is explained by the model. Finally, diagnostic
checks are applied to determine whether or not the chosen
model adequately represents the given time series. If not, the
model must be modified and the three steps are repeated until
an adequate model is achieved [18,19,22].

Transfer function allows modeling of the relationship
between a target or output series (in our case, resistance) and
one or several explanatory or input series (in our case, use of
one or several antimicrobials). Several strategies have been
proposed to build such models. We used the method proposed
by Haugh [23] for Example 1 presented in this paper and the
Linear Transfer Function (LTF) identification method pro-
posed by Pankratz [24] for Example 2. In short, the method
proposed by Haugh consists of identifying an adequate
ARIMA model for both the output and the input time series,
computing the cross-correlation function (CCF) between the
residuals of each ARIMA model, identifying the systematic
part of the transfer function model, i.e. the adequate lags
between the output and input variables as a measure of how
the input series is a leading indicator for the output series,

introducing the lagged input series in the model, estimating
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Figure 2 Yearly hospital ceftazidime
use and percentage ceftazidime-resis-
tant/intermediate Gram-negative bacilli,
Hospital Vega Baja, Spain, 1991-98. H
ceftazidime use (DDD/1000 patient-
days); [, ceftazidime-resistant/inter-
mediate Gram-negative bacilli (%).

Figure 3 Smoothed monthly hospital
ceftazidime use and percentage ceftazi-
dime-resistant/intermediate  Gram-ne-
gative bacilli (centered moving average
of period 5), Hospital Vega Baja, Spain,
1991-98. Adapted from Lopez-Lozano
et al [26]. ===, ceftazidime use (DDD/
1000 patient-days); —, ceftazidime-
resistant/intermediate  Gram-negative
bacilli (%).

Figure 4 Monthly hospital ceftazidime
use (observed) and monthly percentage
ceftazidime-resistant/intermediate

Gram-negative bacilli (observed and
predicted by transfer function model,
see Table 1), Hospital Vega Baja, Spain,
1991-98. Adapted from Lopez-Lozano
et al [26]. ===, observed ceftazidime use
(DDD/1000 patient-days); —, ob-
served ceftazidime-resistant/intermedi-
ate Gram-negative bacilli (%); - — -,
predicted ceftazidime-resistant/inter-
mediate Gram-negative bacilli (%).
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the parameters and performing diagnostic checks [18,23]. The
LTF method consists in directly constructing a transfer
function model with a reasonable number of lags for the
input variable(s) approaching the stochastic part of the model
using an autoregressive term of order 1 (AR1), then in
eliminating nonsignificant terms and identifying an ARIMA
model for the part of the model that is not explained, i.e.
disturbances, and finally in estimating the parameters and
performing diagnostic checks [24,25]. One advantage of the
LTF method is that it allows multivariate transfer function
modeling, i.e. the analysis of the effect of several input series
on one output series.

Short-term forecasting of resistance, i.e. up to 6 months, can
be obtained with ARIMA models (using past resistance data
only) or transfer function models (using both past resistance
and antimicrobial use data).

Example 1: Ceftazidime use and ceftazidime-resistant Gram-
negative bacilli, Hospital Vega Baja, Spain, July 1991-December
1998 [26]

Figure 3 shows smoothed data on ceftazidime use and the
percentage of ceftazidime-resistant Gram-negative bacilli.
These curves were obtained using a 5-month MA transforma-
tion, i.e. the value plotted for a specific month is the average of
the value observed this month, the previous 2 months and the
next 2 months. Although these smoothed series have no
statistical value, they give a better visual representation of the
behavior of the two series and their possible relationship. To
study this relationship, we used raw data as presented in Figure
4 and the methodology described above. The transfer function
model is presented in Table 1 and can be interpreted as
follows. The present percentage of ceftazidime-resistant
Gram-negative bacilli is related to the percentage of the same
resistance observed 3 and 5 months ago. An increase (or
decrease) of 1 DDD/1000 patient-days of ceftazidime use
results, with an average delay of 1 month, in an average
increase (or decrease) of 0.42% of the percentage of resistance.

Table 1 Transfer function model for percentage ceftazidime-resistant/
intermediate Gram-negative bacilli taking into account hospital
ceftazidime use, Hospital Vega Baja, Spain, 1991-98 [26]

Term Order® Parameter® (SE) T-ratio P-value
Constant 0 1.354 (0.760) 1.78 0.078

Ceftazidime use 1 0.420 (0.096) 4.34 <0.0001
AR® 3 0.352 (0.096) 3.68 <0.001

AR 5 0.265 (0.098) 2.72 <0.01

?Delay necessary to observe the effect (in months).
PSize and direction of the effect.
°AR, autoregressive term representing past values of resistance.
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The model can also be presented as the following equation:
%Ry = 1.354 + 0.352%R 3 + 0.265%R (5 + 0.420U,_,

where %R is the percentage of ceftazidime-resistant Gram-
negative bacilli, ¢ is the time in months, and U is the hospital
ceftazidime use. The determination coefficient R* was 0.44.
This means that this model, taking into account past
antimicrobial use and past values of resistance, can explain
44% of the variations in the resistance series; the remaining
54% being due to other factors such as the use of other
antimicrobials or infection control practices. Nevertheless, this
model allowed us to predict the percentage of ceftazidime-
resistant Gram-negative bacilli for the first 6 months of 1999 as
4.7,3.9,4.5, 4.2, 3.4 and 4.2, respectively (Figure 4). By using
such transfer function models, similar results were obtained for
imipenem use and imipenem-resistant Pseudomonas aeruginosa
(Table 2) and various other antimicrobial-bacteria combina-
tions in the same hospital.

Example 2: Use of aminoglycosides and third-generation cephalos-
porins and amikacin-resistant P. aeruginosa, Hospital Vega Baja,
Spain, July 1991-September 1999 [27]

Figures 5 and 6 show smoothed data on the percentage of
amikacin-resistant P. aeruginosa and use of various aminoglyco-
sides and third-generation cephalosporins, respectively. Figure
5 clearly shows that, with one exception, there was no
concomitant variation in amikacin use and the percentage of
amikacin-resistant P. aeruginosa, suggesting that most variations
of resistance were related to other factors. The transfer
function model is presented in Table 3 and can be interpreted
as follows. The present percentage of amikacin-resistant
P. aeruginosa is related to the percentage of the same resistance
observed 2 months ago. An increase (or decrease) of 1 DDD/
1000 patient-days of amikacin use results, with an average

delay of 7 months, in an average increase (or decrease) of

Table 2 Transfer function model for percentage imipenem-resistant/
intermediate P. aeruginosa taking into account hospital imipenem use,
Hospital Vega Baja, Spain, 1991-98 [26]

Term Order® Parameter® (SE) T-ratio P-value
Constant 0 4.388 (1.717) 256 <0.05
Imipenem use 1 0.400 (0.104) 3.83 <0.001
AR® 5 —0.247 (0.108) —228 <0.05
MAd 1 —0.212 (0.106) —200 <0.05
MA 6 —0.241 (0.105) —229 <0.02

?Delay necessary to observe the effect (in months).

®Size and direction of the effect.

°AR, autoregressive term representing past values of resistance.
9MA, moving average term representing disturbances or abrupt
changes of resistance.
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Table 3 Multivariate transfer function model for percentage amikacin-
resistant/intermediate P. aeruginosa taking into account hospital
aminoglycoside and third-generation cephalosporin use, Hospital Vega
Baja, Spain, 1991-99 [27]

Term Order® Parameter® (SE) T-ratio P-value
Constant 0 —20.741 (4.516) —459 <0.001
Amikacin use 7 0.973 (0.391) 249 <0.02
Gentamicin use 7 0.420 (0.153) 275 <0.01
Cefotaxime use 3 0.297 (0.112) 266 <0.01
Cefotaxime use 6 0.437 (0.110) 398 <0.001
AR® 2 0.295 (0.091) 324 <001

“Delay necessary to observe the effect (in months).
PSize and direction of the effect.
°AR, autoregressive term representing past values of resistance.

0.97% of the percentage of resistance. The same interpretation
can be made for gentamicin use with an average delay of 7
months and an average effect on resistance of 0.42%, and for

cefotaxime use with average delays of 3 and 6 months and an

Figure 5 Smoothed monthly hospital
use of various aminoglycosides and
amikacin-resistant/inter-
mediate P. aeruginosa (centered mov-
ing average of period 5), Hospital Vega
Baja, Spain, 1991-98. Adapted from
Lopez-Lozano et al [27]. ===, amikacin
use (DDD/1000 patient-days); = m m,
gentamicin use (DDD/1000 patient-
days); — — —, tobramycin use (DDD/
1000 patient-days); —, amikacin-resis-

percentage

tant/intermediate P. aeruginosa (%).

Figure 6 Smoothed monthly hospital
use of various third-generation cepha-
losporins and percentage amikacin-
resistant/intermediate  P. aeruginosa
(centered moving average of period 5),
Hospital Vega Baja, Spain, 1991-98.
Adapted from Lopez-Lozano et al
[27]. e, ceftazidime use (DDD/1000
patient-days); = = = cefotaxime use
(DDD/1000 patient-days); — — —, cef-
triaxone use (DDD/1000 patient-days);
—, amikacin-resistant / intermediate
P. aeruginosa (%).

average effect on resistance of 0.73% (algebraic sum of both
effects). No relationship with resistance was observed when
we tried to include use of other aminoglycosides and other
third-generation cephalosporins in the model.

As a verification, we examined co-resistance patterns among
amikacin-resistant and amikacin-susceptible P. aeruginosa
(Table 4). Resistance to amikacin in P. aeruginosa isolates
was strongly associated with gentamicin resistance, less
strongly, although significantly, associated with tobramycin
and ceftazidime resistance, and not associated with cefotaxime
resistance. However, one could read this table in another
way and notice that more than 90% of amikacin-resistant
P. aeruginosa isolates were also resistant to gentamicin and
cefotaxime, whereas only 42.5% of isolates were resistant to
tobramycin and 18.8% to ceftazidime. Data on ceftriaxone are
difficult to interpret because only approximately half of the
P. aeruginosa isolates were tested for susceptibility to this
antimicrobial. Common sense suggests that within a popula-
tion of bacteria an antibiotic selects for the bacteria that resist
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Table 4 Antimicrobial co-resistance in amikacin-resistant/intermediate and amikacin-susceptible P. aeruginosa

isolates, Hospital Vega Baja, Spain, 1991-99

35

Co-resistance Amikacin-R/I? Amikacin-S? Risk ratio P-value
no. (%) no. (%)

Gentamicin-R/I 78 (97.5) 177 (17.5) 128.0 <0.0001

Cefotaxime-R/I 73 (91.3) 840 (83.0) - NS®

Ceftriaxone-R/I° 40 (81.6) 361 (74.7) - NS

Tobramycin-R/I 34 (42.5) 18 (1.8) 14.8 <0.0001

Ceftazidime-R/I 15 (18.8) 37 (3.7) 4.6 <0.0001

R, resistant; |, intermediate; S, susceptible.
NS, nonsignificant.

°Only 55.3% of isolates were tested for susceptibility to ceftriaxone.

this antibiotic. In our case, gentamicin use would select for
gentamicin-resistant bacteria, including gentamicin-resistant
Gram-negative bacilli that are almost all resistant to amikacin.
This would result in an increase in the frequency of amikacin-
resistant Gram-negative bacilli within this bacterial population.
On the other hand, tobramycin use and ceftazdime use would
select for a small percentage of amikacin-resistant Gram-
negative bacilli isolates that would probably not result in an
increase in their frequency within the bacterial population.
These data on co-resistance are therefore consistent with the

results obtained with the transfer function model.

CONCLUSION

During the past 20 years, there have been numerous attempts
to study the relationship between antimicrobial use and
resistance using surveillance data. The method presented here
represents another of those attempts. It proved helpful to
demonstrate a temporal relationship between antimicrobial use
and resistance and, unlike most other methods, this method
could take into account the use of several antimicrobials to
explain one specific type of resistance, quantify the effect of
use on resistance and estimate the delay between variations in
use and subsequent variations in resistance. Additionally, it
allowed us to predict future levels of resistance based on past
antimicrobial use and resistance data. Our observations show
that ecologic systems such as that within this hospital tend to
react to changes in antimicrobial use much faster than
previously thought, i.e. within a few months rather than
several years. This finding has recently been confirmed by
Corbella et al who reported rapid variations in the percentage
of imipenem-resistant Acinetobacter baumannii  following
changes in carbapenem use in a Spanish hospital [28]. The
recent application of time series analysis to antimicrobial use
and resistance data from the primary health care sector in
Denmark shows that this is probably also true outside hospitals
[29]. In conclusion, time series analysis is a new tool that can

help us make sense of antimicrobial use and resistance

surveillance data, an area where modelling has proven difficult.
Future developments must include confirmation of the
usefulness of this method in other hospitals and in other
countries. A multicenter project named ViResiST (Vigilancia
de la Resistencia por medio del anilisis de Series Temporales)
is currently ongoing in several Spanish hospitals and hospitals
in a few other countries.
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