78 research outputs found

    Trapping of 27 bp - 8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis

    Get PDF
    Dielectrophoretic trapping of six different DNA fragments, sizes varying from the 27 to 8416 bp, has been studied using confocal microscopy. The effect of the DNA length and the size of the constriction between nanoscale fingertip electrodes on the trapping efficiency have been investigated. Using finite element method simulations in conjunction with the analysis of the experimental data, the polarizabilities of the different size DNA fragments have been calculated for different frequencies. Also the immobilization of trapped hexanethiol- and DTPA-modified 140 nm long DNA to the end of gold nanoelectrodes was experimentally quantified and the observations were supported by density functional theory calculations.Comment: 17 pages (1 column version), 8 figure

    Dielectrophoresis of nanoscale dsDNA and humidity effects on its electrical conductivity

    Get PDF
    The dielectrophoresis method for trapping and attaching nanoscale double-stranded DNA between nanoelectrodes was developed. The method gives a high yield of trapping single or a few molecules only which enables transport measurements at the single molecule level. Electrical conductivity of individual 140-nm-long DNA molecules was measured, showing insulating behavior in dry conditions. In contrast, clear enhancement of conductivity was observed in moist conditions, relating to the interplay between the conformation of DNA molecules and their conductivity.Comment: 4 pages, 2 figure

    Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorption

    Get PDF
    The traditional silicate bioactive glasses exhibit poor thermal processability, which inhibits fiber drawing or sintering into scaffolds. The composition of the silicate glasses has been modified to enable hot processing. However, the hot forming ability is generally at the expense of bioactivity. Metaphosphate glasses, on the other hand, possess excellent thermal processability, congruent dissolution, and a tailorable degradation rate. However, due to the layer-by-layer dissolution mechanism, cells do not attach to the material surface. Furthermore, the congruent dissolution leads to a low density of OH groups forming on the glass surface, limiting the adsorption of proteins. It is well regarded that the initial step of protein adsorption is critical as the cells interact with this protein layer, rather than the biomaterial itself. In this paper, we explore the possibility of improving protein adsorption on the surface of phosphate glasses through a variety of surface treatments, such as washing the glass surface in acidic (pH 5), neutral, and basic (pH 9) buffer solutions followed or not by a treatment with (3-aminopropyl)triethoxysilane (APTS). The impact of these surface treatments on the surface chemistry (contact angle, ζ-potential) and glass structure (FTIR) was assessed. In this manuscript, we demonstrate that understanding of the material surface chemistry enables to selectively improve the adsorption of albumin and fibronectin (used as model proteins). Furthermore, in this study, well-known silicate bioactive glasses (i.e., S53P4 and 13-93) were used as controls. While surface treatments clearly improved proteins adsorption on the surface of both silicate and phosphate glasses, it is of interest to note that protein adsorption on phosphate glasses was drastically improved to reach similar protein grafting ability to the silicate bioactive glasses. Overall, this study demonstrates that the limited cell/phosphate glass biological response can easily be overcome through deep understanding and control of the glass surface chemistry

    Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity

    Get PDF
    Background: Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of similar to 7.9 million base pairs (Mb), representing a similar to 300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained similar to 24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.Peer reviewe

    Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (\u3ci\u3eFragaria vesca\u3c/i\u3e) with chromosome-scale contiguity

    Get PDF
    Background: Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust, cost-effective approach to produce high-quality reference genomes.We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ~7.9 million base pairs (Mb), representing a ~300-fold improvement of the previous version. The vast majority (\u3e99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ~24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions

    In-frame deletion in canine PITRM1 is associated with a severe early-onset epilepsy, mitochondrial dysfunction and neurodegeneration

    Get PDF
    We investigated the clinical, genetic, and pathological characteristics of a previously unknown severe juvenile brain disorder in several litters of Parson Russel Terriers. The disease started with epileptic seizures at 6–12 weeks of age and progressed rapidly to status epilepticus and death or euthanasia. Histopathological changes at autopsy were restricted to the brain. There was severe acute neuronal degeneration and necrosis diffusely affecting the grey matter throughout the brain with extensive intraneuronal mitochondrial crowding and accumulation of amyloid-β (Aβ). Combined homozygosity mapping and genome sequencing revealed an in-frame 6-bp deletion in the nuclear-encoded pitrilysin metallopeptidase 1 (PITRM1) encoding for a mitochondrial protease involved in mitochondrial targeting sequence processing and degradation. The 6-bp deletion results in the loss of two amino acid residues in the N-terminal part of PITRM1, potentially affecting protein folding and function. Assessment of the mitochondrial function in the affected brain tissue showed a significant deficiency in respiratory chain function. The functional consequences of the mutation were modeled in yeast and showed impaired growth in permissive conditions and an impaired respiration capacity. Loss-of-function variants in human PITRM1 result in a childhood-onset progressive amyloidotic neurological syndrome characterized by spinocerebellar ataxia with behavioral, psychiatric and cognitive abnormalities. Homozygous Pitrm1-knockout mice are embryonic lethal, while heterozygotes show a progressive, neurodegenerative phenotype characterized by impairment in motor coordination and Aβ deposits. Our study describes a novel early-onset PITRM1-related neurodegenerative canine brain disorder with mitochondrial dysfunction, Aβ accumulation, and lethal epilepsy. The findings highlight the essential role of PITRM1 in neuronal survival and strengthen the connection between mitochondrial dysfunction and neurodegeneration

    Functional Characterization of a Newly Identified Group B Streptococcus Pullulanase Eliciting Antibodies Able to Prevent Alpha-Glucans Degradation

    Get PDF
    Streptococcal pullulanases have been recently proposed as key components of the metabolic machinery involved in bacterial adaptation to host niches. By sequence analysis of the Group B Streptococcus (GBS) genome we found a novel putative surface exposed protein with pullulanase activity. We named such a protein SAP. The sap gene is highly conserved among GBS strains and homologous genes, such as PulA and SpuA, have been described in other pathogenic streptococci. The SAP protein contains two N-terminal carbohydrate-binding motifs, followed by a catalytic domain and a C-terminal LPXTG cell wall-anchoring domain. In vitro analysis revealed that the recombinant form of SAP is able to degrade α-glucan polysaccharides, such as pullulan, glycogen and starch. Moreover, NMR analysis showed that SAP acts as a type I pullulanase. Studies performed on whole bacteria indicated that the presence of α-glucan polysaccharides in culture medium up-regulated the expression of SAP on bacterial surface as confirmed by FACS analysis and confocal imaging. Deletion of the sap gene resulted in a reduced capacity of bacteria to grow in medium containing pullulan or glycogen, but not glucose or maltose, confirming the pivotal role of SAP in GBS metabolism of α-glucans. As reported for other streptococcal pullulanases, we found specific anti-SAP antibodies in human sera from healthy volunteers. Investigation of the functional role of anti-SAP antibodies revealed that incubation of GBS in the presence of sera from animals immunized with SAP reduced the capacity of the bacterium to degrade pullulan. Of interest, anti-SAP sera, although to a lower extent, also inhibited Group A Streptococcus pullulanase activity. These data open new perspectives on the possibility to use SAP as a potential vaccine component inducing functional cross-reacting antibodies interfering with streptococcal infections

    Gender and respiratory findings in workers occupationally exposed to organic aerosols: A meta analysis of 12 cross-sectional studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gender related differences in respiratory disease have been documented. The aim of this study was to investigate gender related differences in respiratory findings by occupation. We analyzed data from 12 of our previously published studies.</p> <p>Methods</p> <p>Three thousand and eleven (3011) workers employed in "organic dust" industries (1379 female and 1632 male) were studied. A control group of 806 workers not exposed to any kind of dust were also investigated (male = 419, female = 387). Acute and chronic respiratory symptoms and lung function were measured. The weighted average method and the Mantel-Haentszel method were used to calculate the odds ratios of symptoms. Hedge's unbiased estimations were used to measure lung function differences between men and women.</p> <p>Results</p> <p>There were high prevalences of acute and chronic respiratory symptoms in all the "dusty" studied groups compared to controls. Significantly less chronic cough, chronic phlegm as well as chronic bronchitis were found among women than among men after the adjustments for smoking, age and duration of employment. Upper respiratory tract symptoms by contrast were more frequent in women than in men in these groups. Significant gender related lung function differences occurred in the textile industry but not in the food processing industry or among farmers.</p> <p>Conclusion</p> <p>The results of this study suggest that in industries processing organic compounds there are gender differences in respiratory symptoms and lung function in exposed workers. Whether these findings represent true physiologic gender differences, gender specific workplace exposures or other undefined gender variables not defined in this study cannot be determined. These data do not suggest that special limitations for women are warranted for respiratory health reasons in these industries, but the issue of upper respiratory irritation and disease warrants further study.</p

    EAACI position paper on occupational rhinitis

    Get PDF
    The present document is the result of a consensus reached by a panel of experts from European and non-European countries on Occupational Rhinitis (OR), a disease of emerging relevance which has received little attention in comparison to occupational asthma. The document covers the main items of OR including epidemiology, diagnosis, management, socio-economic impact, preventive strategies and medicolegal issues. An operational definition and classification of OR tailored on that of occupational asthma, as well as a diagnostic algorithm based on steps allowing for different levels of diagnostic evidence are proposed. The needs for future research are pointed out. Key messages are issued for each item
    • …
    corecore