5,296 research outputs found

    Anomalous structural and mechanical properties of solids confined in quasi one dimensional strips

    Get PDF
    We show using computer simulations and mean field theory that a system of particles in two dimensions, when confined laterally by a pair of parallel hard walls within a quasi one dimensional channel, possesses several anomalous structural and mechanical properties not observed in the bulk. Depending on the density ρ\rho and the distance between the walls LyL_y, the system shows structural characteristics analogous to a weakly modulated liquid, a strongly modulated smectic, a triangular solid or a buckled phase. At fixed ρ\rho, a change in LyL_y leads to many reentrant discontinuous transitions involving changes in the number of layers parallel to the confining walls depending crucially on the commensurability of inter-layer spacing with LyL_y. The solid shows resistance to elongation but not to shear. When strained beyond the elastic limit it fails undergoing plastic deformation but surprisingly, as the strain is reversed, the material recovers completely and returns to its original undeformed state. We obtain the phase diagram from mean field theory and finite size simulations and discuss the effect of fluctuations.Comment: 14 pages, 13 figures; revised version, accepted in J. Chem. Phy

    Transverse energy distributions and J/ψJ/\psi production in Pb+Pb collisions

    Get PDF
    We have analyzed the latest NA50 data on transverse energy distributions and J/ψJ/\psi suppression in Pb+Pb collisions. The transverse energy distribution was analysed in the geometric model of AA collisions. In the geometric model, fluctuations in the number of NN collisions at fixed impact parameter are taken into account. Analysis suggests that in Pb+Pb collisions, individual NN collisions produces less , than in other AA collisions. The nucleons are more transparent in Pb+Pb collisions. The transverse energy dependence of the J/ψJ/\psi suppression was obtained following the model of Blaizot et al, where charmonium suppression is assumed to be 100% effective above a threshold density. With fluctuations in number of NN collisions taken into account, good fit to the data is obtained, with a single parameter, the threshold density.Comment: Revised version with better E_T fit. 4 pages, 2 figure

    High-resolution 3D weld toe stress analysis and ACPD method for weld toe fatigue crack initiation

    Get PDF
    Weld toe fatigue crack initiation is highly dependent on the local weld toe stress-concentrating geometry including any inherent flaws. These flaws are responsible for premature fatigue crack initiation (FCI) and must be minimised to maximise the fatigue life of a welded joint. In this work, a data-rich methodology has been developed to capture the true weld toe geometry and resulting local weld toe stress-field and relate this to the FCI life of a steel arc-welded joint. To obtain FCI lives, interrupted fatigue test was performed on the welded joint monitored by a novel multi-probe array of alternating current potential drop (ACPD) probes across the weld toe. This setup enabled the FCI sites to be located and the FCI life to be determined and gave an indication of early fatigue crack propagation rates. To understand fully the local weld toe stress-field, high-resolution (5 mu m) 3D linear-elastic finite element (FE) models were generated from X-ray micro-computed tomography (mu-CT) of each weld toe after fatigue testing. From these models, approximately 202 stress concentration factors (SCFs) were computed for every 1 mm of weld toe. These two novel methodologies successfully link to provide an assessment of the weld quality and this is correlated with the fatigue performance

    Ray optics in flux avalanche propagation in superconducting films

    Get PDF
    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu-layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 mkm thick metal layer, the refractive index was close to n=1.4. The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adapted physical picture.Comment: 4 pages, 4 figure

    The (2√3×3)rect. phase of alkylthiolate self-assembled monolayers on Au(111): a symmetry-constrained structural solution

    Get PDF
    Low-energy electron-diffraction (LEED) patterns of the Au(111)(2√3×3)rect.-butylthiolate surface phase (a structure also seen in longer alkane chain thiolate self-assembled monolayers) show missing diffracted beams characteristic of glide symmetry, but do not show the larger set of missing beams found in surface x-ray diffraction (SXRD). The difference can be attributed to the greatly enhanced role of multiple scattering in LEED, but the combination of symmetry constraints placed on possible structural models by the observed SXRD and LEED beam extinctions greatly reduces the number of possible structural models. Only three such models are identified, one of which is clearly incompatible with other published experimental data. The relative merits of the remaining models, both involving Au adatom-thiolate moieties, are discussed in the light of the results of previous experimental studies

    M-Theory on (K3 X S^1)/Z_2

    Full text link
    We analyze MM-theory compactified on (K3×S1)/Z2(K3\times S^1)/Z_2 where the Z2Z_2 changes the sign of the three form gauge field, acts on S1S^1 as a parity transformation and on K3 as an involution with eight fixed points preserving SU(2) holonomy. At a generic point in the moduli space the resulting theory has as its low energy limit N=1 supergravity theory in six dimensions with eight vector, nine tensor and twenty hypermultiplets. The gauge symmetry can be enhanced (e.g. to E8E_8) at special points in the moduli space. At other special points in the moduli space tensionless strings appear in the theory.Comment: LaTeX file, 11 page

    Dynamics of a metastable state nonlinearly coupled to a heat bath driven by an external noise

    Full text link
    Based on a system-reservoir model, where the system is nonlinearly coupled to a heat bath and the heat bath is modulated by an external stationary Gaussian noise, we derive the generalized Langevin equation with space dependent friction and multiplicative noise and construct the corresponding Fokker-Planck equation, valid for short correlation time, with space dependent diffusion coefficient to study the escape rate from a metastable state in the moderate to large damping regime. By considering the dynamics in a model cubic potential we analyze the result numerically which are in good agreement with the theoretical prediction. It has been shown numerically that the enhancement of rate is possible by properly tuning the correlation time of the external noise.Comment: 13 pages, 5 figures, Revtex4. To appear in Physical Review

    Dissipative hydrodynamics in 2+1 dimension

    Full text link
    In 2+1 dimension, we have simulated the hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity. Comparison of evolution of ideal and viscous fluid, both initialised under the same conditions e.g. same equilibration time, energy density and velocity profile, reveal that the dissipative fluid evolves slowly, cooling at a slower rate. Cooling get still slower for higher viscosity. The fluid velocities on the otherhand evolve faster in a dissipative fluid than in an ideal fluid. The transverse expansion is also enhanced in dissipative evolution. For the same decoupling temperature, freeze-out surface for a dissipative fluid is more extended than an ideal fluid. Dissipation produces entropy as a result of which particle production is increased. Particle production is increased due to (i) extension of the freeze-out surface and (ii) change of the equilibrium distribution function to a non-equilibrium one, the last effect being prominent at large transverse momentum. Compared to ideal fluid, transverse momentum distribution of pion production is considerably enhanced. Enhancement is more at high pTp_T than at low pTp_T. Pion production also increases with viscosity, larger the viscosity, more is the pion production. Dissipation also modifies the elliptic flow. Elliptic flow is reduced in viscous dynamics. Also, contrary to ideal dynamics where elliptic flow continues to increase with transverse momentum, in viscous dynamics, elliptic flow tends to saturate at large transverse momentum. The analysis suggest that initial conditions of the hot, dense matter produced in Au+Au collisions at RHIC, as extracted from ideal fluid analysis can be changed significantly if the QGP fluid is viscous.Comment: 11 pages, 10 figures (revised). In the revised version, calculations are redone with ADS/CFT and perurbative estimate of viscosity. Comments on the unphysical effects like early reheating of the fluid, in 1st order dissipative theories are added. The particle spectra calculations are redone with modified programm

    On the size and shape of excluded volume polymers confined between parallel plates

    Full text link
    A number of recent experiments have provided detailed observations of the configurations of long DNA strands under nano-to-micrometer sized confinement. We therefore revisit the problem of an excluded volume polymer chain confined between two parallel plates with varying plate separation. We show that the non-monotonic behavior of the overall size of the chain as a function of plate-separation, seen in computer simulations and reproduced by earlier theories, can already be predicted on the basis of scaling arguments. However, the behavior of the size in a plane parallel to the plates, a quantity observed in recent experiments, is predicted to be monotonic, in contrast to the experimental findings. We analyze this problem in depth with a mean-field approach that maps the confined polymer onto an anisotropic Gaussian chain, which allows the size of the polymer to be determined separately in the confined and unconfined directions. The theory allows the analytical construction of a smooth cross-over between the small plate-separation de Gennes regime and the large plate-separation Flory regime. The results show good agreement with Langevin dynamics simulations, and confirm the scaling predictions.Comment: 15 pages, 3 figure
    corecore