162 research outputs found

    On line clinical reasoning assessment with Script Concordance test in urology: results of a French pilot study

    Get PDF
    BACKGROUND: The Script Concordance test (SC) test is an assessment tool that measures the capacity to solve ill-defined problems, that is, reasoning in a context of uncertainty. This study assesses the feasibility, reliability and validity of the SC test made available on the Web to French urologists. METHODS: A 97 items SC test was developed based on major educational objectives of French urology training programmes. A secure Web site was created with two sequential modules: a) The first one for the reference panel to elaborate the scoring system; b) The second for candidates with different levels of experience in urology: Board certified urologists, chief-residents, residents, medical students. All participants were recruited on a voluntary basis. Statistical analysis included descriptive statistics of the participants' scores and factorial analysis of variance (ANOVA) to study differences between groups' means. Reliability was evaluated with Cronbach's alpha coefficient. RESULTS: The on line SC test has been operational since June 2004. Twenty-six faculty members constituted the reference panel. During the following 10 months, 207 participants took the test online (124 urologists, 29 chief-residents, 38 residents, 16 students). No technical problem was encountered. Forty-five percent of the participants completed the test partially only. Differences between the means scores for the 4 groups were statistically significant (P = 0.0123). The Bonferroni post-hoc correction indicated that significant differences were present between students and chief-residents, between students and urologists. There were no differences between chief-residents and urologists. Reliability coefficient was 0.734 for the total group of participants. CONCLUSION: Feasibility of Web-based SC test was proved successful by the large number of participants who participated in a few months. This Web site has permitted to quickly confirm reliability of the SC test and develop strategy to improve construct validity of the test when applied in the field of urology. Nevertheless, optimisation of the SC test content, with a smaller number of items will be necessary. Virtual medical education initiative such as this SC test delivered on the Internet warrants consideration in the current context of national pre-residency certification examination in France

    Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets

    Get PDF
    Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13-14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential "universal" targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability

    Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection

    Get PDF
    Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes. © 2014 Gouzy et al
    • …
    corecore