18,522 research outputs found

    Cross-sectional and prospective associations between cognitive appraisals and posttraumatic stress disorder symptoms following stroke

    Get PDF
    This study examined cross-sectional and prospective associations between cognitive appraisals and posttraumatic stress disorder (PTSD) symptoms following stroke. While in hospital, stroke patients (n=81) completed questionnaires assessing cognitive appraisals (i.e., negative cognitions about the self, negative cognitions about the world, and self-blame) and PTSD symptoms. PTSD symptoms were assessed again 3 months later when all patients had been discharged from hospital (n=70). Significant correlations were found between the time 1 measures of negative cognitions about the self and the world, but not self-blame, and the severity of PTSD symptoms measured at time 1 and at time 2. Regression analyses revealed that cognitive appraisals explained a significant amount of variance in the severity of PTSD symptoms at time 1, with negative cognitions about the self-emerging as a significant predictor. In contrast, time 1 cognitive appraisals were unable to explain additional variance in time 2 PTSD severity over and above that explained by time 1 PTSD severity. The findings therefore provide only weak support for Ehlers and Clark's cognitive model of PTSD

    Low-background temperature sensors fabricated on parylene substrates

    Full text link
    Temperature sensors fabricated from ultra-low radioactivity materials have been developed for low-background experiments searching for neutrinoless double-beta decay and the interactions of WIMP dark matter. The sensors consist of electrical traces photolithographically-patterned onto substrates of vapor-deposited parylene. They are demonstrated to function as expected, to do so reliably and robustly, and to be highly radio-pure. This work is a proof-of-concept study of a technology that can be applied to broad class of electronic circuits used in low-background experiments

    Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    Get PDF
    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications

    Large Pseudo-Counts and L2L_2-Norm Penalties Are Necessary for the Mean-Field Inference of Ising and Potts Models

    Full text link
    Mean field (MF) approximation offers a simple, fast way to infer direct interactions between elements in a network of correlated variables, a common, computationally challenging problem with practical applications in fields ranging from physics and biology to the social sciences. However, MF methods achieve their best performance with strong regularization, well beyond Bayesian expectations, an empirical fact that is poorly understood. In this work, we study the influence of pseudo-count and L2L_2-norm regularization schemes on the quality of inferred Ising or Potts interaction networks from correlation data within the MF approximation. We argue, based on the analysis of small systems, that the optimal value of the regularization strength remains finite even if the sampling noise tends to zero, in order to correct for systematic biases introduced by the MF approximation. Our claim is corroborated by extensive numerical studies of diverse model systems and by the analytical study of the mm-component spin model, for large but finite mm. Additionally we find that pseudo-count regularization is robust against sampling noise, and often outperforms L2L_2-norm regularization, particularly when the underlying network of interactions is strongly heterogeneous. Much better performances are generally obtained for the Ising model than for the Potts model, for which only couplings incoming onto medium-frequency symbols are reliably inferred.Comment: 25 pages, 17 figure

    A benign, low Z electron capture agent for negative ion TPCs

    Get PDF
    We have identified nitromethane (CH3_3NO2_2) as an effective electron capture agent for negative ion TPCs (NITPCs). We present drift velocity and longitudinal diffusion measurements for negative ion gas mixtures using nitromethane as the capture agent. Not only is nitromethane substantially more benign than the only other identified capture agent, CS2_2, but its low atomic number will enable the use of the NITPC as a photoelectric X{}-ray polarimeter in the 1{}-10 keV band

    Casimir-Polder forces, boundary conditions and fluctuations

    Full text link
    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.Comment: 5 page

    A Search for Low Surface Brightness Structure Around Compact Narrow Emission Line Galaxies

    Full text link
    As the most extreme members of the rapidly evolving faint blue galaxy population at intermediate redshift, the compact narrow emission line galaxies (CNELGs) are intrinsically luminous (-22 < M_B < -18) with narrow emission linewidths (30 < \sigma < 125 km/s). Their nature is heavily debated: they may be low-mass starbursting galaxies that will fade to present-day dwarf galaxies or bursts of star formation temporarily dominating the flux of more massive galaxies, possibly related to in situ bulge formation or the formation of cores of galaxies. We present deep, high-quality (~0.6 - 0.8 arcsec) images with CFHT of 27 CNELGs. One galaxy shows clear evidence for a tidal tail; the others are not unambiguously embedded in galactic disks. Approximately 55% of the CNELGS have sizes consistent with local dwarfs of small-to-intermediate sizes, while 45% have sizes consistent with large dwarfs or disks galaxies. At least 4 CNELGs cannot harbor substantial underlying disk material; they are low-luminosity galaxies at the present epoch (M_B > -18). Conversely, 15 are not blue enough to fade to low-luminosity dwarfs (M_B > -15.2). The majority of the CNELGs are consistent with progenitors of intermediate-luminosity dwarfs and low-luminosity spiral galaxies with small disks. CNELGs are a heterogeneous progenitor population with significant fractions (up to 44%) capable of fading into today's faint dwarfs (M_B > -15.2), while 15 to 85% may only experience an apparently extremely compact CNELG phase at intermediate redshift but remain more luminous galaxies at the present epoch.Comment: 16 pages, 14 figures, emulateapj, published in Ap

    Search for correlation effects in linear chains of trapped ions

    Get PDF
    We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, searching for correlations between the decay times of the different ions. We find no evidence for correlations: the number of quantum jumps with separations of less than 10 ms is consistent with statistics to within errors of 0.05%; the lifetime of the metastable level derived from the data is consistent with that derived from independent single-ion data at the level of the experimental errors 1%; and no rank correlations between the decay times were found with sensitivity to rank correlation coefficients at the level of |R| = 0.024.Comment: With changes to introduction. 5 pages, including 4 figures. Submitted to Europhys. Let
    corecore