33,145 research outputs found

    Heat Fluctuations in Brownian Transducers

    Get PDF
    Heat fluctuation probability distribution function in Brownian transducers operating between two heat reservoirs is studied. We find, both analytically and numerically, that the recently proposed Fluctuation Theorem for Heat Exchange [C. Jarzynski and D. K. Wojcik, Phys. Rev. Lett. 92, 230602 (2004)] has to be modified when the coupling mechanism between both baths is considered. We also extend such relation when external work is present. Our work fixes the domain of applicability of the theorem in more realistic operating systems.Comment: Comments are welcom

    Deconfinement and chiral restoration in nonlocal SU(3) chiral quark models

    Get PDF
    We study the features of nonlocal SU(3) chiral quark models with wave function renormalization. Model parameters are determined from meson phenomenology, considering different nonlocal form factor shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration transitions at finite temperature, introducing the couplings of fermions to the Polyakov loop. We analyze the results obtained for various thermodynamical quantities considering different Polyakov loop potentials and nonlocal form factors, in comparison with data obtained from lattice QCD calculations.Comment: 25 pages, 5 figures. Discussion of results enlarged, figures modified, references added. Version to appear in Physical Review

    Inhomogeneous phases in nonlocal chiral quark models

    Get PDF
    The presence of inhomogeneous phases in the QCD phase diagram is analyzed within chiral quark models that include nonlocal interactions. We work at the mean field level, assuming that the spatial dependence of scalar and pseudo-scalar condensates is given by a dual chiral density wave. Phase diagrams for Gaussian nonlocal form factors are studied in detail and compared with those obtained within the Nambu-Jona-Lasinio model and quark-meson approaches.Comment: 14 pages, 3 figure

    Gravitational Field of Spherical Branes

    Full text link
    The warped solution of Einstein's equations corresponding to the spherical brane in five-dimensional AdS is considered. This metric represents interiors of black holes on both sides of the brane and can provide gravitational trapping of physical fields on the shell. It is found the analytic form of the coordinate transformations from the Schwartschild to co-moving frame that exists only in five dimensions. It is shown that in the static coordinates active gravitational mass of the spherical brane, in agreement with Tolman's formula, is negative, i.e. such objects are gravitationally repulsive.Comment: Minor corrections, 8 pages, the version accepted by Mod. Phys. Lett.
    • …
    corecore