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Nambu—Jona-Lasinio model and quark-meson approaches.
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I. INTRODUCTION

Due to the well-known sign problem, present lattice
QCD analyses are still not able to provide fully faithful
predictions for QCD thermodynamics at low temperatures
and relatively high chemical potentials, including the
region where the critical point is expected to appear.
Thus, our knowledge of the strongly interacting matter
phase diagram largely relies on the study of effective
models, which offer the possibility to get predictions of
the transition features at regions that are not accessible
through lattice techniques. In this context, in the last years
some works have considered that the chiral symmetry
restoration at low temperatures could be driven by the
formation of nonuniform phases [1]. One particularly
interesting result suggests that the expected critical end-
point of the first order chiral phase transition might be
replaced by a so-called Lifshitz point (LP), where two
homogeneous phases and one inhomogeneous phase meet
[2]. This result has been obtained in the chiral limit, where
the endpoint becomes a tricritical point (TCP), in the
framework of the Nambu—Jona-Lasinio model (NJL)
[3]. As it is well known, in this model quark fields interact
through a local chirally invariant four-fermion coupling.
More recently, this issue has also been addressed in the
context of a quark-meson (QM) model with vacuum
fluctuations [4], where it is found that the LP might
coincide or not with the TCP depending on the model
parametrization.
In a previous work [5] we have analyzed the relation

between the positions of the TCP and LP in the framework
of nonlocal chiral quark models using a generalized
Ginzburg-Landau approach. It should be mentioned that
nonlocal models can be viewed as extensions of the NJL
model that intend to represent a step toward a more
realistic modeling of QCD. In fact, nonlocality arises
naturally in the context of successful approaches to low-

energy quark dynamics [6,7], and it has been shown [8]
that nonlocal models can lead to a momentum dependence
in the quark propagator that is consistent with lattice QCD
results [9–11]. Another advantage of these models is that
the effective interaction is finite to all orders in the loop
expansion, and therefore there is not need to introduce
extra cutoffs [12]. Moreover, in this framework it is
possible to obtain an adequate description of the proper-
ties of strongly interacting particles at both zero and finite
temperature/density [8,13–26]. The results of Ref. [5]
indicate that for all phenomenologically acceptable para-
metrizations considered the TCP is located at a higher
temperature and a lower chemical potential in comparison
with the LP. Consequently, these models seem to favor a
scenario in which the onset of the first order transition
between homogeneous phases is not covered by an
inhomogeneous, energetically favored phase. The aim
of the present work is to further investigate the conse-
quences of the possible existence of inhomogeneous
condensates on the thermodynamics of nonlocal models
by explicitly constructing the associated phase diagrams
in the mean field approximation. In principle, a full
analysis would require us to consider general spatial
dependent condensates, looking for the configurations
that minimize the mean field thermodynamic potential at
each value of the temperature and chemical potential.
Since for an arbitrary 3-dimensional configuration this
turns out to be a very difficult task, even in the case of
local models it is customary to consider one-dimensional
modulations, expecting that the qualitative features of the
inhomogeneous phases will not be significantly affected
by the specific form of the spatial dependence carried
by the condensates [1]. Due to the additional difficulties
introduced by the presence of nonlocal quark-quark
interactions, here we will consider a simple one-
dimensional configuration, namely the so-called dual

PHYSICAL REVIEW D 92, 056007 (2015)

1550-7998=2015=92(5)=056007(9) 056007-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.056007
http://dx.doi.org/10.1103/PhysRevD.92.056007
http://dx.doi.org/10.1103/PhysRevD.92.056007
http://dx.doi.org/10.1103/PhysRevD.92.056007


chiral density wave (DCDW) [27], for which the spatial
dependence of the quark condensates is given by

hq̄ð~xÞqð~xÞi ∝ cosð ~Q · ~xÞ; hq̄ð~xÞiγ5qð~xÞi ∝ sinð ~Q · ~xÞ;
ð1Þ

for both q ¼ u and d quark flavors. Regarding the non-
local interactions, we will consider the case of covariant
and instantaneous nonlocal form factors with a Gaussian
momentum dependence.
The article is organized as follows. In Sec. II we

present the general theoretical framework and propose an
ansatz for the bosonic mean fields that leads to the
required spatial dependence of chiral condensates. The
model parametrization is also briefly introduced. Then in
Sec. III we show the phase diagrams for various para-
metrizations and discuss the features of the corresponding
phase transitions. Finally, in Sec. IV we state our
conclusions.

II. THEORETICAL FRAMEWORK

A. Inhomogeneous condensates in nonlocal
chiral quark models

Let us consider a two-flavor model that includes a four-
point coupling between nonlocal quark-antiquark currents.
The corresponding effective action in Euclidean space is
given by [19]

SE ¼
Z

d4x

�
ψ̄ðxÞð−i∂ þmcÞψðxÞ −

G
2
jaðxÞjaðxÞ

�
;

ð2Þ

where ψ is the fermion doublet ψ ≡ ðu; dÞT and mc stands
for the current quark mass in the isospin limit. The nonlocal
currents jaðxÞ are given by

jaðxÞ ¼
Z

d4zGðzÞ ψ̄
�
xþ z

2

�
Γa ψ

�
x −

z
2

�
; ð3Þ

where we have defined Γa ¼ ðΓ0; ~ΓÞ ¼ ð1; iγ5~τÞ, while
GðzÞ is a form factor that characterizes the effective
interaction.
The model can be bosonized through the introduction of

bosonic fields ΦaðxÞ associated to the quark bilinears in
Eq. (3) [12]. A standard procedure leads to the Euclidean
action

SE ¼
Z

d4xd4x0ψ̄ðx0ÞD−1ðx0; xÞψðxÞ

þ 1

2G

Z
d4xΦaðxÞΦaðxÞ; ð4Þ

where

D−1ðx0; xÞ ¼ δð4Þðx0 − xÞð−i∂x þmcÞ

þ Gðx0 − xÞΓaΦa

�
xþ x0

2

�
: ð5Þ

We will work within the mean field approximation
(MFA), in which the bosonic fields are expanded around
a real classical configuration Φ̄aðxÞ. After integrating the
fermion degrees of freedom one obtains the bosonized
action

SðbosÞMF ¼
Z

d4x
Z

d4x0
�
Tr logD−1

MFðx0; xÞ

þ 1

2G
Φ̄aðx0ÞΦ̄aðxÞδð4Þðx0 − xÞ

�
; ð6Þ

where the trace acts on Dirac, flavor and color spaces.
Let us consider a system in equilibrium at finite temper-

ature T and chemical potential μ, where inhomogeneous
phases could be favored. At the mean field level the grand
canonical thermodynamic potential per unit volume is
given by

ωMF ¼ −
T
V
logZMF; ð7Þ

where ZMF is the mean field partition function that arises
from the effective action in Eq. (6). If the ground state is in
general not homogeneous, the quark condensate at a given
position ~x can be calculated by introducing an auxiliary
static field φð~xÞ. One has

hψ̄ð~xÞψð~xÞi ¼ −
δ logZ½φ�
δφð~xÞ

����
φ¼0

; ð8Þ

where Z½φ� is obtained from ZMF by changing
D−1

MFðx0; xÞ → D−1
MFðx0; xÞ þ δð4Þðx0 − xÞφð~xÞ in the inverse

propagator given in Eq. (5), taken at mean field. Moreover,
since now parity is not necessarily an exact symmetry of the
vacuum, one can get in general a nonzero value for the
condensate hψ̄ð~xÞΓ3ψð~xÞi ¼ hψ̄ð~xÞiγ5τ3ψð~xÞi. The latter
can be obtained from the partition function by adding a
term δð4Þðx0 − xÞiγ5τ3φð~xÞ to the inverse propagator in
Eq. (5) at mean field.
The thermodynamics can be worked out using the

Matsubara formalism. Thus, it is convenient to consider
the inhomogeneous mean field propagator in momentum
space. One has

DMFðp0; pÞ ¼
�
ð−pþmcÞð2πÞ4δð4Þðp0 − pÞ

þ g

�
pþ p0

2

�
ΓaΦ̄aðp0 − pÞ

�
−1
; ð9Þ
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where gðpÞ and Φ̄aðpÞ are the Fourier transforms of the
form factor GðxÞ and the mean fields Φ̄aðxÞ, respectively.
Since energy is conserved for static mean field configura-
tions, it is also useful to define a reduced effective
propagator ~Dðp0; pÞ through

DMFðp0; pÞ ¼ ð2πÞδðp0
4 − p4Þ ~Dðp0; pÞ: ð10Þ

With these definitions the condensates are found to be
given by

hψ̄ð~xÞΓaψð~xÞi

¼ −T
X∞
n¼−∞

Z
d3p
ð2πÞ3

d3p0

ð2πÞ3 e
ið~p0−~pÞ·~xTr½Γa

~Dðp0; pÞ�;

a ¼ 0; 3; ð11Þ

where the traces are taken over Dirac, flavor and color
spaces. Here the fourth component of p0 and p in ~Dðp0; pÞ
is given by p0

4 ¼ p4 ¼ ωn − iμ, where μ is the chemical
potential and ωn ¼ ð2nþ 1ÞπT are the fermionic
Matsubara frequencies.

B. Dual chiral density wave

We address here the relatively simple situation in which
the vacuum is modulated by a dual chiral density wave. In
this configuration the chiral condensate rotates along the
chiral circle, carrying a constant three-momentum ~Q [see
Eq. (1)]. For simplicity, in the following we will consider
the case of vanishing current quark masses, mc ¼ 0. In this
limit, the desired behavior of the chiral condensates can be
obtained by considering the following ansatz for the mean

field configuration Φ̄aðp0 − p; ~QÞ [28]:

ΓaΦ̄aðp0 − p; ~QÞ

¼ ð2πÞ4δðp0
4 − p4Þϕ

X
s¼�

1þ sγ5τ3
2

δð3Þð~p0 − ~pþ s ~QÞ:

ð12Þ

From this ansatz it is evident that the effective propa-
gator will be block diagonal in flavor space, thus it can
be written as a direct sum of Du and Dd propagators.
By calculating the inverse in Eq. (9) we get for the
u quark

~Duðp0; p; ~QÞ ¼
 
Bþðp

0þp
2

; ~QÞδð3Þð~p0 − ~p − ~QÞ A−ðp; ~QÞδð3Þð~p0 − ~pÞ
Aþðp; ~QÞδð3Þð~p0 − ~pÞ B−ðp

0þp
2

; ~QÞδð3Þð~p0 − ~pþ ~QÞ

!
; ð13Þ

where A�ðp; ~QÞ and B�ðp
0þp
2

; ~QÞ are 2 × 2 matrices in Dirac space. These are given by

A�ðp; ~QÞ ¼ 1

Δðp; ~QÞ
f½p2

4 þ ð~p� ~QÞ2 þ ϕ2gðpÞ2�ðip41� ~p · ~τÞ þ ϕ2gðpÞ2 ~Q · ~τg

B�ðt; ~QÞ ¼ ϕgðtÞ
Δðt; ~QÞ

f½t2 − ~Q2=4þ ϕ2gðtÞ2�1 − ið~t × ~Q� t4 ~QÞ · ~τ�g; ð14Þ

where

Δðp; ~QÞ ¼ ½p2 − ~Q2=4þ ϕ2gðpÞ2�2 þ p2 ~Q2 − ð~p · ~QÞ2:
ð15Þ

The mean field propagator for the d quark is obtained from
the previous expressions by

~Ddðp0; p; ~QÞ ¼ ~Duðp0; p;− ~QÞ: ð16Þ

In this way, from Eq. (11) we obtain

hūð~xÞuð~xÞi ¼ hd̄ð~xÞdð~xÞi ¼ FðQ2Þ cosð ~Q · ~xÞ;
hūð~xÞiγ5uð~xÞi ¼ −hd̄ð~xÞiγ5dð~xÞi ¼ FðQ2Þ sinð ~Q · ~xÞ;

ð17Þ

where

FðQ2Þ ¼ −4NcT
X∞
n¼−∞

Z
d3p
ð2πÞ3

×
ϕgðpÞ½p2 −Q2=4þ ϕ2gðpÞ2�

Δðp; ~QÞ
; ð18Þ

with p4 ¼ ωn − iμ.
If the ground state is assumed to be homogeneous, the

mean fields Φ̄aðxÞ are uniform. Then, from parity
invariance one has Φ̄aðpÞ ¼ ð2πÞ4δð4ÞðpÞδa0ϕ, and the
operator in Eq. (9) can be trivially inverted. The
corresponding expressions for the condensates are

obtained in this case by setting ~Q ¼ 0 in Eqs. (17)
and (18), namely [16,19]
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hūui ¼ hd̄di ¼ −4NcT
X∞
n¼−∞

Z
d3p
ð2πÞ3

gðpÞϕ
p2 þ gðpÞ2ϕ2

;

hūiγ5τ3ui ¼ hd̄iγ5τ3di ¼ 0: ð19Þ

Let us now evaluate the thermodynamic potential in
Eq. (7) for the case of the dual chiral density wave. From
the mean field partition function ZMFðT; μÞ, using the
Matsubara formalism we obtain the grand canonical
thermodynamic potential per unit volume

ωMFðT; μÞ ¼ −2NcT
X∞
n¼−∞

Z
d3p
ð2πÞ3 logΔðp;

~QÞ þ ϕ2

2G
;

ð20Þ

where once again the fourth component of p in Δðp; ~QÞ is
p4 ¼ ωn − iμ. Here the integral over p is divergent for
large momenta. A standard way of regularizing the
thermodynamic potential is by subtracting the free con-
tribution ωfree ¼ ωMFðϕ ¼ 0Þ and adding it in a regularized
form. In this way one ends up with

ωreg
MF ¼ −2NcT

X∞
n¼−∞

Z
d3p
ð2πÞ3 log

�
1

þ ϕ2gðpÞ2 ϕ
2gðpÞ2 þ 2ðp2 −Q2=4Þ

ðp2 þQ2=4Þ2 − ð~p · ~QÞ2
�
þ ϕ2

2G

þ ωreg
free; ð21Þ

where

ωreg
free ¼ −Nc

�
7π2T4

90
þ T2μ2

3
þ μ4

6π2

�
: ð22Þ

The mean field values ϕ and Q≡ j ~Qj can be obtained by
looking for the minimum of ωMF through the coupled
equations

∂ωreg
MF

∂ϕ ¼ 0;
∂ωreg

MF

∂Q ¼ 0: ð23Þ

A region in which the absolute minimum is reached for a
nonzeroQwill correspond to an inhomogeneous phase. As
expected, if chiral symmetry is not dynamically broken (i.e.
ϕ ¼ 0) the regularized thermodynamic potential reduces to
the free contribution ωreg

free, which does not depend on Q.

C. Model parametrization

In the chiral limit the model has only one coupling
parameter, namely the constant G. In addition, one has to
specify the functional form of the form factor gðpÞ, which
requires the introduction of some momentum scale Λ in
order to satisfy Lorentz invariance. For definiteness we will
consider here a Gaussian behavior

gðpÞ ¼ exp ð−p2=Λ2Þ; ð24Þ
which guarantees a fast ultraviolet convergence of loop
integrals.
Given the form factor shape, one can fix the model

parameters G and Λ so as to reproduce the phenomeno-
logical values of the pion decay constant fπ and the chiral
quark condensate hq̄qi. In fact, since we are working in the
chiral limit, it is obvious from dimensional analysis that any
dimensionless quantity turns out to be just a function of the
dimensionless combination Ḡ ¼ GΛ2, while a dimension-
ful quantity can be written as a function of Ḡ times some
power of a dimensionful parameter, say e.g. fπ . According
to the recent analysis in Ref. [29], we will take here fchπ ¼
86 MeV and hq̄qich ¼ −ð270 MeVÞ3 (superindices stress
that the values correspond to the chiral limit), thus the
“physical” value of Ḡ will be that leading to a ratio
ð−hq̄qichÞ1=3=fchπ ≃ 3.14. In order to check the parameter
dependence of our results we will consider values for this
ratio in the range 2.8 to 3.5. For fchπ ¼ 86 MeV, this
corresponds to a shift of at most ∼30 MeV around the
central value ð−hq̄qichÞ1=3 ¼ 270 MeV.
In Fig. 1 the solid lines indicate our numerical results for

the parameters Ḡ andΛ that correspond to the above range of
the ratio ð−hq̄qichÞ1=3=fchπ . In the left panel we show the
values of the dimensionless parameter Ḡ as a function of the
ratio ð−hq̄qichÞ1=3=fchπ , while in the right panel we quote
the effective cutoff scale Λ as a function of the quark
condensate for the phenomenologically preferred value
fπ ¼ 86 MeV. The cutoff values are found to be of order
∼1 GeV, in agreement with phenomenological expectations.
Finally, it is interesting to consider the case of the so-

called “instantaneous” form factors, which just depend on
the three-momentum ~p [14]. In this case Lorentz symmetry
is broken, and a spatial cutoff is needed [notice that, in
particular, the usual “local” NJL model is obtained by
setting gð~pÞ ¼ θðΛ2

NJL − ~p2Þ]. If we consider once again a
Gaussian shape for the form factor, namely gð~pÞ ¼
expð~p2=Λ2Þ, and same phenomenological requirements
as in the covariant case, the corresponding numerical
values for Ḡ and Λ are those shown by the dashed lines
in Fig. 1. As it is discussed in Refs. [19,30], instantaneous
models with soft cutoff functions lead to relative large
values of the quark condensate, therefore for these models
low values of the cutoff are typically required. We have
taken Λ ¼ 600 MeV as a lower bound, which implies
ð−hq̄qichÞ1=3=fchπ ≥ 3.21.

III. PHASE DIAGRAMS

Let us consider a hadronic system at finite temperature
T and chemical potential μ. We will discuss the features
of the phase transitions in the T − μ plane for the
nonlocal chiral quark models discussed in the preceding
section. As stated in the Introduction, in general one can
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find phases in which the chiral symmetry is either broken
or restored, and regions in which either homogeneous or
inhomogeneous phases are preferred. In addition, a
general analysis based on the Ginzburg-Landau expan-
sion shows that nonlocal models allow the presence of
both a tricritical point (TCP) and a Lifshitz point (LP),
located in different positions [5].
We start by discussing the case of Gaussian covariant

nonlocal form factors. Our numerical results for the
corresponding phase diagrams are displayed in Fig. 2,
where we show different scenarios that may arise if the
model parameters lie within the range discussed in the
previous section. We have chosen four parameter sets,
denoted as PI, PII, PIII and PIV, which correspond to a pion
decay constant fchπ ¼ 86 MeV and quark condensate values
ð−hq̄qichÞ1=3 ¼ 240, 247, 270 and 300 MeV, respectively,
at zero T and μ. The different regions of the phase diagram,
as well as the corresponding transition curves and critical
points, are shown in the left panels of Fig. 2. It is seen that
in all cases at low temperatures and chemical potentials one
finds the usual homogeneous, chirally broken (HCB)
phase, while for low T and high μ the system lies in an
inhomogeneous (IH) phase (in the case of PIV, which
corresponds to hq̄qich ¼ −ð300 MeVÞ3, the onset of the IH
phase at T ¼ 0 occurs at a chemical potential of about
630 MeV, therefore it is not shown in the figure).
Let us start by analyzing the case of the parametrization

PI [upper left panel of Fig. 2, corresponding to a relatively
low chiral quark condensate hq̄qich ¼ −ð240 MeVÞ3, and a
relatively high value of the coupling Ḡ]. The different
phases are indicated by the shaded areas, while solid and
dashed lines correspond to first and second order transi-
tions, respectively. At a temperature of about 100 MeVand
low chemical potentials, it is seen that the system lies in the

HCB phase, in which chiral symmetry is spontaneously
broken. As usual, by increasing μ one finds a second order
phase transition to a homogeneous phase in which chiral
symmetry is restored (HCR phase). If the temperature is
lowered, the corresponding second order transition curve
ends at a tricritical point, beyond which it becomes a first
order transition line. Now, by following this line, at a
temperature T3P ≃ 20 MeV one arrives at a triple point.
For T < T3P, at a given critical chemical potential μcðTÞ
the system undergoes a first order transition from the HCB
phase into an IH phase, in which chiral symmetry is found
to be only approximately restored. On the other hand, if one
starts with a system in the IH phase and increases the
temperature at constant chemical potential, at some critical
value of T one arrives at a second order phase transition
into the HCR phase. As it is shown in the figure, the
corresponding second order transition line continues
beyond the triple point with a dashed-dotted line inside
the HCB area. The latter represents a boundary of a region
in which the thermodynamic potential has a local
minimum that corresponds to an (unstable) IH phase.
Finally, in the phase diagram we also show with a dotted
line the lower spinodal corresponding to the homogeneous
chiral restoration transition.
The previously described first order transition from the

HCB to the IH phase is illustrated in Fig. 3: left and right
panels show contour plots of the mean field thermodynamic
potential ωreg

MFðϕ; QÞ at zero temperature for μ ¼ 260 and
μ ¼ 280 MeV, respectively, which correspond to both
sides of the transition point μcð0Þ ¼ 274 MeV. The plots
clearly show the transition from an absolute minimum
at ϕ≃ 340 MeV, Q ¼ 0, to another one in which ϕ
reduces to about 50 MeV, while the chiral condensates
get spatial dependencies as those given by Eq. (17), with

FIG. 1. Left: values of the dimensionless parameter Ḡ for a given ratio ð−hq̄qichÞ1=3=fchπ . Right: effective cutoff scale Λ for a given
value of the quark condensate, with fπ fixed to the phenomenological value (in the chiral limit) 86 MeV. Solid (dashed) lines correspond
to covariant (instantaneous) Gaussian form factors.
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Q≃ 450 MeV. These features are also shown in the upper
right panel of Fig. 2, where we quote the curves for ϕ andQ
at T ¼ 0 as functions of the chemical potential. Notice that
on the HCB side (left panel of Fig. 3) there also exists a
local minimum at ðϕ; QÞ ∼ ð50 MeV; 400 MeVÞ.
Below the previously discussed phase diagram we show

in Fig. 2 the case of parametrization PII, in which the quark
condensate at zero T and μ is slightly larger, namely
hq̄qich ¼ −ð247 MeVÞ3. It can be seen that in this case the
IH phase region gets reduced and splits in two: a small
“island” of IH phase becomes isolated from the large IH
phase “continent” found at high chemical potentials (see
shaded regions in the figure). Then, for PIII and PIV it is

seen that the island disappears, and the onset of the
continent is pushed up to larger values of the chemical
potential. The discontinuity ofQ at this transition for T ¼ 0
becomes increased, as it is shown in the right panels of
Fig. 2. As stated above, for PIV (lower panels of Fig. 2) it is
found that the inhomogeneous phase occurs for values of μ
out of the region of the phase diagram displayed in our
graphs. For comparison, in Table I we quote the values of
the effective cutoffs, the values of ϕ and the chiral
condensate ð−hq̄qichÞ1=3 for zero T and μ, and the critical
chemical potentials at T ¼ 0, for parametrizations PI to
PIV. We denote by μ0cð0Þ the onset of the IH phase
continent, while μ00cð0Þ stands for the chemical potential
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FIG. 2 (color online). Left: T − μ phase diagrams for different model parametrizations. Solid (dashed) lines indicate first (second)
order phase transitions. The dotted line is the lower spinodal corresponding to the homogeneous chiral restoration transition, while the
dashed-dotted line is a boundary of a region in which there exists a local inhomogeneous minimum of the thermodynamical potential.
TCP, LP and 3P stand for tricritical, Lifshitz and triple points. Right: values of ϕ andQ as functions of the chemical potential, for T ¼ 0.
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at the transition between the IH phase island and the HCR
phase region. All values are given in MeV.
It is worth pointing out that, for these models, the would-

be Lifshitz point (i.e. the point where the HCB and HCR
phases would meet the IH one along the second order phase
transition lines) is hidden inside the HCB phase region:
around the would-be LP, the HCB phase turns out to be
energetically preferred in all cases considered. Instead, as it
is indicated in the upper left panels of Fig. 2, a triple point
can be found in the case of PI and PII. It is also worth
mentioning that the second order phase transition curves, as
well as both the TCP and would-be LP, can be calculated
for these models through a quite precise semianalytical
approach [5,18].
The characteristics of the phase diagrams can be com-

pared with those obtained within the NJL and the quark-
meson model, which have been recently analyzed in this
context. As stated in the Introduction, in the NJL the TCP
and LP are coincident, whereas in the QM this can be the
case or not, depending on the parametrization. In some
cases it is shown [4] that the HCB-HCR second order phase
transition ends at a Lifshitz point, while the TCP appears to
be hidden into the IH region (i.e., the opposite situation to
that found in our models). It is interesting to notice that,
according to the analyses in Refs. [1,4,31], for both the NJL

and QM models some parametrizations lead to phase
diagrams that show IH “continents” that extend to arbi-
trarily high chemical potentials. In fact, it is a matter of
discussion whether the presence of these continents arises
just as a regularization artifact. We stress that in nonlocal
models the ultraviolet convergence of loop integrals fol-
lows from the behavior of form factors, which effectively
embrace the underlying QCD interactions (indeed, the form
factors can be fitted from lattice QCD calculations for the
effective quark propagators [8,26]). The fact that various
quark models including different regularization procedures
lead to similar qualitative features of the phase diagram
seems to indicate that these features are rather robust.
However, it is necessary to mention that we have not
considered the effects of color superconductivity, which are
expected to be important at intermediate and large chemical
potentials and could have a significant impact in the phase
diagram.
Finally, we address the case of instantaneous form factors

mentioned in the previous section. For these parametriza-
tions the qualitative features of the phase diagrams are found
to be basically the same as those discussed above. The main
difference is that similar diagrams correspond to models
leading to larger values of the quark condensates: for a
model with ð−hq̄qichÞ1=3 ¼ 270 MeV one obtains a phase
diagram similar to that of parametrization PI for the covariant
case, while the small “island” of inhomogeneous phase
arises when the corresponding condensate is ð−hq̄qichÞ1=3 ≃
285 MeV. For larger absolute values of the quark conden-
sates the island disappears and the onset of the inhomo-
geneous phase is pushed up to larger values of the chemical
potential, just as in the case of covariant form factors.

IV. SUMMARY AND CONCLUSIONS

In this work we have analyzed the possible existence of
inhomogeneous phases in the context of a simple version of

FIG. 3. Contour plots of the thermodynamic potential ωreg
MF for a nonlocal chiral quark model at zero temperature and finite chemical

potential, close to the first order transition between HCB and IH phases. The plots correspond to parametrization PI, for chemical
potentials μ ¼ 260 MeV (left) and μ ¼ 280 MeV (right).

TABLE I. Effective cutoff Λ, chiral condensate and mean field
ϕ at zero T and μ, and zero-temperature critical chemical
potentials for parametrizations PI to PIV. All values are given
in MeV.

ð−hq̄qichÞ1=3 Λ ϕ μcð0Þ μ00cð0Þ μ0cð0Þ
PI 240 808 338 274 � � � � � �
PII 247 863 315 266 288 295
PIII 270 1045 264 249 � � � 470
PIV 300 1295 227 236 � � � 629
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nonlocal SU(2) chiral quark models in the chiral limit. For
simplicity, only the one-dimensional modulation associated
to a dual chiral density wave (DCDW) has been considered.
In this framework, different parametrizations of the non-
locality, including both covariant and instantaneous form
factors, have been investigated.
For all studied scenarios it is seen that the sizes of

inhomogeneous phase regions show a rather strong depend-
ence on model parameters. In all cases we find the existence
of a tricritical point, while, keeping fπ fixed, for high
values of the dimensionless coupling Ḡ (low absolute
values of the chiral condensate) we find at low temperatures
a first order transition between the homogeneous chirally
broken phase and the inhomogeneous phase. These phases
and the homogeneous chirally restored one meet then at a
triple point. On the other hand, for lower values of Ḡ the
onset of the inhomogeneous phase is pushed up to higher
chemical potentials and the triple point disappears. As in
previous analyses made in the framework of NJL and QM
models [1,4,31], the inhomogeneous “continents” in our
phase diagrams extend to arbitrarily high chemical poten-
tials. Thus, their existence seems to be a rather robust

prediction of this type of quark models. It should be
mentioned, however, that effects of color superconduc-
tivity, which are expected to be important at intermediate
and large chemical potentials, have not been included in
these works. In this sense, it is clear that to clarify this
issue color superconducting interaction channels have to
be incorporated in future calculations. In addition, the role
of vector channels within the framework of the nonlocal
models deserves further investigation as well. Finally, it
would be interesting to explore the possibility of going
beyond the DCDW ansatz used in the present nonlocal
scheme by considering more general one dimensional
modulations.
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