58,627 research outputs found

    Development of thermal control methods for specialized components and scientific instruments at very low temperatures (follow-on)

    Get PDF
    Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights

    A measurable effect of general relativity in satellite orbits

    Get PDF
    Relativistic corrections calculated for one way Doppler system used in calculating orbital velocit

    Experimental Observation of Modulation Instability and Optical Spatial Soliton Arrays in Soft Condensed Matter

    Get PDF
    In this Letter we report observations of optically induced self-organization of colloidal arrays in the presence of un-patterned counter-propagating evanescent waves. The colloidal arrays formed along the laser propagation-axis are shown to be linked to the break-up of the incident field into optical spatial solitons, the lateral spacing of the arrays being related to modulation instability of the soft condensed matter system.Comment: 16 pages, 3 figure

    The impact of water on free-falling bodies

    Get PDF
    Report discussed measures to cushion impact on body falling into water. Heavy loads are generated by impact and by pressures of water cavity collapsing onto the body

    Using visualization for visualization : an ecological interface design approach to inputting data

    Get PDF
    Visualization is experiencing growing use by a diverse community, with continuing improvements in the availability and usability of systems. In spite of these developments the problem of how first to get the data in has received scant attention: the established approach of pre-defined readers and programming aids has changed little in the last two decades. This paper proposes a novel way of inputting data for scientific visualization that employs rapid interaction and visual feedback in order to understand how the data is stored. The approach draws on ideas from the discipline of ecological interface design to extract and control important parameters describing the data, at the same time harnessing our innate human ability to recognize patterns. Crucially, the emphasis is on file format discovery rather than file format description, so the method can therefore still work when nothing is known initially of how the file was originally written, as is often the case with legacy binary data. © 2013 Elsevier Ltd
    corecore