116 research outputs found
Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany
The impact of wood combustion on ambient aerosols was investigated in
Augsburg, Germany during a winter measurement campaign of a six-week period.
Special attention was paid to the high time resolution observations of wood
combustion with different mass spectrometric methods. Here we present and
compare the results from an Aerodyne aerosol mass spectrometer (AMS) and gas
chromatographic – mass spectrometric (GC-MS) analysed PM<sub>1</sub> filters on an
hourly basis. This includes source apportionment of the AMS derived organic
matter (OM) using positive matrix factorisation (PMF) and analysis of
levoglucosan as wood combustion marker, respectively.
<br><br>
During the measurement period nitrate and OM mass are the main contributors
to the defined submicron particle mass of AMS and Aethalometer with 28%
and 35%, respectively. Wood combustion organic aerosol (WCOA) contributes
to OM with 23% on average and 27% in the evening and night time.
Conclusively, wood combustion has a strong influence on the organic matter
and overall aerosol composition. Levoglucosan accounts for 14% of WCOA
mass with a higher percentage in comparison to other studies. The ratio
between the mass of levoglucosan and organic carbon amounts to 0.06.
<br><br>
This study is unique in that it provides a one-hour time resolution
comparison between the wood combustion results of the AMS and the GC-MS
analysed filter method at a PM<sub>1</sub> particle size range. The comparison of
the concentration variation with time of the PMF WCOA factor, levoglucosan
estimated by the AMS data and the levoglucosan measured by GC-MS is highly
correlated (<i>R</i><sup>2</sup> = 0.84), and a detailed discussion on the contributors
to the wood combustion marker ion at mass-to-charge ratio 60 is given. At
the end, both estimations, the WCOA factor and the levoglucosan
concentration estimated by AMS data, allow to observe the variation with
time of wood combustion emissions (gradient correlation with GC-MS
levoglucosan of <i>R</i><sup>2</sup> = 0.84). In the case of WCOA, it provides the
estimated magnitude of wood combustion emission. Quantitative estimation of
the levoglucosan concentration from the AMS data is problematic due to its
overestimation in comparison to the levoglucosan measured by the GC-MS
Characterization of gaseous and particulate phase polycyclica aromatic hydrocarbons emitted during preharvest burning of sugar cane in different regions of Kwa-Zulu Natal, South Africa
DATA AVAILABILITY : All associated data and calculation tools are available in the Supporting Information or directly from the corresponding author ( [email protected])Biomass burning is a significant anthropogenic source of air pollution, including the preharvest burning of sugar cane. These burn events result in atmospheric emissions, including semivolatile organic compounds, that may have adverse impacts on air quality and human health on a local, regional, and even a global scale. Gaseous and particulate polycyclic aromatic hydrocarbon (PAH) emissions from various sugar cane burn events in the province of Kwa-Zulu Natal in South Africa were simultaneously sampled using a portable denuder sampling technology, consisting of a quartz fiber filter sandwiched between two polydimethylsiloxane multichannel traps. Total gas and particle phase PAH concentrations ranged from 0.05 to 9.85â”gâmâ3 per individual burn event, and nine PAHs were quantified. Over 85% of all PAHs were found to exist in the gas phase, with smaller two- and three-ring PAHs, primarily naphthalene, 1-methyl naphthalene, and acenaphthylene, being the most dominant and causing the majority of variance between the burn sites. The PAH profiles differed between the different burn events at different sites, emphasizing the significant influence that the crop variety, prevailing weather conditions, and geographical location has on the type and number of pollutants emitted. The potential carcinogenicity of the PAH exposure was estimated based on toxic equivalency factors that showed varying risk potentials per burn event, with the highest value of 5.97ângâmâ3. Environ Toxicol Chem 2023;42:778â792. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.Impala Platinum Ltd;
Bundesministerium fĂŒr Bildung und Forschung;
Helmholtz-Gemeinschaft;
University of Pretoria;
National Research Foundation.https://setac.onlinelibrary.wiley.com/journal/15528618Chemistr
Trace Metals in Soot and PM2.5from Heavy-Fuel-Oil Combustion in a Marine Engine
Heavy fuel oil (HFO) particulate matter (PM) emitted by marine engines is known to contain toxic heavy metals, including vanadium (V) and nickel (Ni). The toxicity of such metals will depend on the their chemical state, size distribution, and mixing state. Using online soot-particle aerosol mass spectrometry (SP-AMS), we quantified the mass of five metals (V, Ni, Fe, Na, and Ba) in HFO-PM soot particles produced by a marine diesel research engine. The in-soot metal concentrations were compared to in-PM2.5measurements by inductively coupled plasma-optical emission spectroscopy (ICP-OES). We found that <3% of total PM2.5metals was associated with soot particles, which may still be sufficient to influence in-cylinder soot burnout rates. Since these metals were most likely present as oxides, whereas studies on lower-temperature boilers report a predominance of sulfates, this result implies that the toxicity of HFO PM depends on its combustion conditions. Finally, we observed a 4-to-25-fold enhancement in the ratio V:Ni in soot particles versus PM2.5, indicating an enrichment of V in soot due to its lower nucleation/condensation temperature. As this enrichment mechanism is not dependent on soot formation, V is expected to be generally enriched within smaller HFO-PM particles from marine engines, enhancing its toxicity
Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke
Background
Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques.
Methods
We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6âJ mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome.
Results
We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7â±â6.5âmgâmââ3, 41âmgâMJ) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3â±â5.1âmgâmââ3, 26âmgâMJââ1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments.
Conclusions
Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects
Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions
Background: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling.
Objectives: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols.
Methods: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses.
Results: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (âsootâ). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification.
Conclusions: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices
PAH emissions from an African cookstove
Combustion of wood and other biomass is a significant contributor to poor air quality in many developing countries. Emissions of particulates and Polycyclic Aromatic Hydrocarbons (PAH) are a major health hazard, particularly in Africa where the use of domestic cookstoves has increased alongside population expansion. Because of economic factors firewood is commonly used in place of the more expensive charcoal; particularly in rural areas. This work conducts a study of PAH emissions from an African cookstove comparing the combustion of both charcoal and firewood. It is demonstrated that PAH and particulate emissions are much higher from the firewood compared to the charcoal. The difference in levels can be interpreted due to the importance of the pyrolysis reactions of the volatile components of wood in PAH formation, whereas these volatiles emissions are much smaller from charcoal. Analysis of the combustion phases (flaming, smouldering) is undertaken and a computer model has been developed to link the composition of the fuels to the emissions of the PAH and particulates. The modelled PAH levels are shown to follow a similar trend to the experimental results
- âŠ