7 research outputs found

    Mouse development with a single E2F activator

    No full text
    The E2F family is conserved from C. elegans to mammals with some family members having transcription activation functions and others having repressor functions(1, 2). Whereas C. elegans(3) and Drosophila melanogaster(4, 5) have a single E2F activator and repressor proteins, mammals evolved to have at least three activator and five repressor proteins(1, 2, 6). Why such genetic complexity evolved in mammals is not known. To begin to evaluate this genetic complexity, we targeted the inactivation of the entire subset of activators, E2f1, E2f2, E2f3a and E2f3b, singly or in combination in mice. We demonstrate that E2f3a is sufficient to support mouse embryonic and postnatal development. Remarkably, expression of E2f3b or E2f1 from the E2f3a locus (E2f3a(3bki); E2f3a(1ki)) suppressed all the postnatal phenotypes associated with the inactivation of E2f3a. We conclude that there is significant functional redundancy among activators and that the specific requirement for E2f3a during postnatal development is dictated by regulatory sequences governing its selective spatiotemporal expression and not by its intrinsic protein functions. These findings provide a molecular basis for the observed specificity among E2F activators during development

    Promoter Hypomethylation and Expression Is Conserved in Mouse Chronic Lymphocytic Leukemia Induced by Decreased or Inactivated Dnmt3a

    No full text
    DNA methyltransferase 3a (DNMT3A) catalyzes the formation of 5-methyl-cytosine in mammalian genomic DNA, and it is frequently mutated in human hematologic malignancies. Bi-allelic loss of Dnmt3a in mice results in leukemia and lymphoma, including chronic lymphocytic leukemia (CLL). Here, we investigate whether mono-allelic loss of Dnmt3a is sufficient to induce disease. We show that, by 16 months of age, 65% of Dnmt3a+/− mice develop a CLL-like disease, and 15% of mice develop non-malignant myeloproliferation. Genome-wide methylation analysis reveals that reduced Dnmt3a levels induce promoter hypomethylation at similar loci in Dnmt3a+/− and Dnmt3aΔ/Δ CLL, suggesting that promoters are particularly sensitive to Dnmt3a levels. Gene expression analysis identified 26 hypomethylated and overexpressed genes common to both Dnmt3a+/− and Dnmt3aΔ/Δ CLL as putative oncogenic drivers. Our data provide evidence that Dnmt3a is a haplo-insufficient tumor suppressor in CLL and highlights the importance of deregulated molecular events in disease pathogenesis

    Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis

    No full text
    Deregulation of the Myc pathway and deregulation of the Rb pathway are two of the most common abnormalities in human malignancies. Recent in vitro experiments suggest a complex cross-regulatory relationship between Myc and Rb that is mediated through the control of E2F. To evaluate the functional connection between Myc and E2Fs in vivo, we used a bitransgenic mouse model of Myc-induced T cell lymphomagenesis and analyzed tumor progression in mice deficient for E2f1, E2f2, or E2f3. Whereas the targeted inactivation of E2f1 or E2f3 had no significant effect on tumor progression, loss of E2f2 accelerated lymphomagenesis. Interestingly, loss of a single copy of E2f2 also accelerated tumorigenesis, albeit to a lesser extent, suggesting a haploinsufficient function for this locus. The combined ablation of E2f1 or E2f3, along with E2f2, did not further accelerate tumorigenesis. Myc-overexpressing T cells were more resistant to apoptosis in the absence of E2f2, and the reintroduction of E2F2 into these tumor cells resulted in an increase of apoptosis and inhibition of tumorigenesis. These results identify the E2f2 locus as a tumor suppressor through its ability to modulate apoptosis

    Rivaroxaban with or without aspirin in stable cardiovascular disease

    No full text
    BACKGROUND: We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events
    corecore